Fabrication of Super-Hydrophobic Membrane with Hydrophilic Polyethersulphone

Article Preview

Abstract:

Here a simple method was developed to fabricate super-hydrophobic membrane with hydrophilic Polyethersulphone (PES) via a sol-gel process. The influences of experimental parameters i.e. the precursor treated time, the baking temperature of the membrane, and the fluorinated time on the hydrophobicity of the membranes were extensively investigated. The correspondent hydrophobicity was crosschecked by the contact angle measurement. For the optimum condition, the contact angle of the resulted super-hydrophobic membrane can be increased to 156°. The FTIR analysis confirmed that the membrane surfaces were covered by hydrophobic functional groups, which resulted in both higher surface roughness and higher heterogeneity, and therefore higher hydrophobicity. The micro/nano-meter crater-like protrusions on the membrane surfaces were observed from the images obtained from both AFM and SEM measurements. Moreover, the spongy holes and the finger-like holes were observed in cortex and intermediate layer respectively, from the cross-section of the SEM images.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

361-366

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Wang, L. Ci, L. Chen, S. Nayak, P.M. Ajayan, N. Koratkar, Nano. Lett. 7 (2007) 697.

Google Scholar

[2] L. Xu, W. Chen, A. Mulchandani, Y. Yan, Angew. Chem. Int. Ed. 44 (2005) 6009

Google Scholar

[3] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299 (2003) 1377.

Google Scholar

[4] W. Barthlott, C. Neinhuis, Planta 202 (1997) 1.

Google Scholar

[5] Z. Jin, D.L. Yang, S.H. Zhang, X.G. Jian, J. Membrane Sci. 310 (2008) 20.

Google Scholar

[6] M. Khayet, J.I. Mengual, T. Matsuurab, J. Membrane Sci. 252 (2005) 101.

Google Scholar

[7] J.-G. Lui, Y.-F. Zheng, M.-D. Cheng, J.Membrane Sci. 308 (2008) 180.

Google Scholar

[8] M. Sandahl, E. Úlfsson, L. Mathiasson, Anal. Chim. Acta 424 (2000) 1.

Google Scholar

[9] G.D. Bothun, B.L. Knutson, H.J. Strobel, S.E. Nokes, J. Membrane Sci. 227 (2003) 183.

Google Scholar

[10] P.H.M. Feron, A.E. Jansen, Sep. Purif. Technol. 27 (2002) 231.

Google Scholar

[11] D. Bhaumik, S. Majumdar, K.K. Sirkar, J. Membrane Sci. 167 (2000) 107.

Google Scholar

[12] H. Mahmud, A. Kumar, R.M. Narbaitz, T. Matsuura, J. Membrane Sci. 179 (2000) 29.

Google Scholar

[13] E. Curcio, S. Simone, G.D. Proio, E. Drioli, A. Cassetta, D. Lamba, J.Membrane Sci. 257 (2005) 134.

Google Scholar

[14] G.D. Profio, E. Curcio, A. Cassetta, D. Lamba, E. Drioli, J. Cryst. Growth 257 (2003) 359.

Google Scholar

[15] I.M. Coelhoso, E. Silvestre, R.M.C. Viegas, J.E.G. Crespo, M.J.T. Carrondo, J. Membrane Sci. 134 (1997) 19.

Google Scholar

[16] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem. Int. Ed 42 (2003) 800.

Google Scholar

[17] M. Kang, R. Jung, H.-S. Kim, H.-J. Jin, Colloid Surface A 313 (2008) 411.

Google Scholar

[18] M. Narita, T. Kasuga, A. Kiyotati, Journal of Japan Institute of Light Metals 50 (2000) 594.

Google Scholar

[19] K. Satoh, H. Nakazumi, J. Sol-Gel Sci. Techn. 27 (2003) 327.

Google Scholar

[20] Q. Wang, Y. Quan, J. Zhang, Q. Chen, Surf. Coat. Tech. 200 (2006) 5493

Google Scholar

[21] J.A. Franco, S.E. Kentish, J.M. Perera, G. Stevens, J. Membrane Sci. 318 (2008) 107.

Google Scholar

[22] Y. Ma, Y.m. Ma, X.y. Cao, H. Zou, L. Jiang, Plastics 35 (2006) 39.

Google Scholar

[23] M.T. Khorasani, H. Mirzadeh, Z. Kermani, Appl. Surf. Sci. 242 (2005) 339.

Google Scholar

[24] Z.G. Guo, F. Zhou, W.M. Liu, Acta Chim. Sinica 64 (2006 ) 761.

Google Scholar

[25] B. Stuart, Infrared Spectroscopy:Fundamentals and Applications, John Wiley & Sons, Ltd, 2004.

Google Scholar