Hydrothermal Sulfidation of White Lead with Elemental Sulfur

Article Preview

Abstract:

Hydrothermal sulfidation of pure white lead with elemental sulfur has been studied in the present paper. The variables considered in the study were temperature, time, particle size and elemental sulfur fraction in the reacting mixture. Temperature and time were the most two important factors, with an increase in temperature and holding time the sulfidation extent of lead improved greatly and the constituent of products changed a lot. At temperatures above 140°C, PbS and PbSO4 were the only stable reaction products in the sulfidation of white lead. The experimental data indicated that under the hydrothermal conditions with a particle size of -58+48 μm and sulfur fraction in reacting mixture of 8% at 140 °C for 90 min, and 86% of lead sulfidation extent was achieved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

624-630

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Gilg, M. Boni, G. Balassone, C.R. Allen, D. Banks, F. Moore. Marble hosted sulfide ores in the Angouran Zn–(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita, Vol. 41(2006), p.1–16.

DOI: 10.1007/s00126-005-0035-5

Google Scholar

[2] M. Rey. The flotation of oxidized ores of lead copper and zinc. IMM. Recent Developments in Mineral Dressing Symposium: London, 1953: 541–548.

Google Scholar

[3] D.W. Fuerstenau, F.Sotillo, A. Valdivieso. Sulfidization and Flotation Behavior of Anglesite, Cerussite and Galena. 15th International Mineral Processing Congress (15th Congres International de Mineralurgie), Vol. II; Cannes; France(1985).

Google Scholar

[4] R. Herrera-Urbina, F.J. Sotillo, D.W. Fuerstenau. Amyl xanthate uptake by natural and sulfide-treated cerussite and galena. International Journal of Mineral Processing, Vol.55 (1985), p.113–128.

DOI: 10.1016/s0301-7516(98)00028-3

Google Scholar

[5] M.C. Fuerstenau, S.A. Olivas, R. Herrera-urbina, K.N. Han. The Surface Characteristics and Flotation Behavior of Anglesite and Cerussite. International Journal of Mineral Processing, Vol. 20(1987), pp.73-85

DOI: 10.1016/0301-7516(87)90018-4

Google Scholar

[6] G. Caproni, R. Ciccu, M. Ghiani, I. Trudu. The processing of oxidized lead and zinc ores in the Campo Pisano and San Giovanni Plants. Minerals Engineering, Vol. 3(1979), p.71–91.

Google Scholar

[7] P.J. Guy, W.J. Trahar. The effects of oxidation and mineral interaction on sulphide flotation. In: Forssberg, K.S.E. (Ed.), Flotation of Sulphide Minerals. Elsevier, Amsterdam(1985).

Google Scholar

[8] A.M. Marabini, V. Alesse, F. Garbassi. Role of sodium sulphide, xanthate and amine in flotation of lead–zinc oxidized ores. In: Jones, M., Oblatt, R. (Eds.), Reagents in the Minerals Industry. The IMM, London(1985).

Google Scholar

[9] S.G. Malghan. Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores. Miner. Metall. Process., Vol. 3(1986), pp.158-163.

DOI: 10.1007/bf03402654

Google Scholar

[10] D.W. Fuerstenau, S. Raghavan. Surface chemical properties of oxide copper minerals. In: P. Somasundaran (Editor), Advances in Mineral Processing, Arbiter Symposium. The Society of Mining Engineers, Littleton, CO(1986).

Google Scholar

[11] F.J. Sotillo, D.W. Fuerstenau. The sulfidization and flotation of cerussite and galena. In: Castro Flores, S.H., Alvarez Moisan, J. (Eds.), Froth Flotation. Elsevier, Amsterdam(1988).

Google Scholar

[12] M. Barbaro. Lead and zinc ores-flotation. Rome: Academic Press(2000).

Google Scholar

[13] G. Önal, G. Bulut, A. Gül, K.T. Perek, F. Arslan. Flotation of Aladag oxide lead–zinc ores. Minerals Engineering, Vol.18(2005), p.279–282.

DOI: 10.1016/j.mineng.2004.10.018

Google Scholar

[14] S. Moradi, A.J. Monhemius. Mixed sulphide–oxide lead and zinc ores: Problems and solutions. Minerals Engineering, Vol.24(2011), pp.1062-1076.

DOI: 10.1016/j.mineng.2011.05.014

Google Scholar