Kinetics and Thermodynamics Study of Thiosulfate Removal from Water by Calcined MgAl-CO3 Layered Double Hydroxides

Article Preview

Abstract:

Layered double hydroxides (LDHs) are potential scavengers for anionic contaminants due to their “memory effect”. Here we report the removal of thiosulfate anion from contaminated water by calcined MgAl–CO3 LDH (CLDH). The results indicate that CLDH exhibits a good performance in adsorption of thiosulfate.We studied the kinetics and thermodynamics of adsorption of thiosulfate from water. The equilibrium isotherm showed that the uptake of thiosulfate anion well agrees with the Langmuir equation, the positive value of △HӨ demonstrates the endothermic feature of the adsorption, the pseudo-second order kinetics model can be uItalic textsed to describe the uptake process and the value of Ea was calculated to be 75.898 kJ/mol. Our results suggest that the process of thiosulfate uptaking was controlled by the reaction rate of thiosulfate with the CLDH rather than diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

880-885

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Cavani, F. Trifiro and A. Vaccari: Catal. Today. 11(1991), p.173–301.

Google Scholar

[2] Y.W. You, H.T. Zhao and G.F. Vance: Appl. Clay Sci. 21(2002), p.217–226.

Google Scholar

[3] R. Liu, R.L. Frost and W.N. Martens: Water Res. 43(2009), p.1323–1329.

Google Scholar

[4] R. Chitrakar, S. Tezuka and A. Sonoda: J. Colloid Interf. Sci. 290(2005), p.45–51.

Google Scholar

[5] R.L. Goswamee, P. Sengupta, K.G. Bhattacharyya and D.K. Dutta: Appl. Clay Sci. 13(1998), p.21–34.

Google Scholar

[6] X. Yu, Z. Chang, X.M. Sun, X.D. Lei, D.G. Evans, S.L. Xu and F.Z. Zhang: Chem. Eng. J. 169(2011), p.151–156.

Google Scholar

[7] J. Vicente and M. Diaz : Environ. Sci. Technol. 37(2003), pp.1452-1456.

Google Scholar

[8] C. Namasivayam and M.V. Sureshkumar: Ind. Eng. Chem. Res. 85(2007), p.521–525.

Google Scholar

[9] O.N. Kononova, A.G. Kholmogorov , N.V. Danilenko, N.G. Goryaeva, K.A. Shatnykh and S.V. Kachin: Hydrometallurgy. 88(2007), p.189–195.

DOI: 10.1016/j.hydromet.2007.03.012

Google Scholar

[10] T.Y. Yan and W.F. Espenscheld: Sci. Technol. 14(1980), pp.732-735.

Google Scholar

[11] D.C. Schreiber and S.G. Pavlostathis: Water Res. 52(1998), pp.1363-1372.

Google Scholar

[12] D.G. Evans and X. Duan: Chem. Commun. (2006) pp.485-496.

Google Scholar

[13] Z.M. Ni, S.J. Xia, L.G. Wang, F.F. Wang and G.X. Pan: J. Colloid Interf. Sci. 316(2007), p.284–291.

Google Scholar

[14] J. Das, D. Das, G.P. Dash and K.M. Parida: J. Colloid Interf. Sci. 251(2002), p.26–32.

Google Scholar

[15] D. Colombie, K. Landfester, E.D. Sudol and M.S. El-Aasser: Langmuir. 16(2000), pp.7905-7913.

Google Scholar

[16] C. Namasivayam and K. Kadirvelu: Coir Pith. Carbon . 37(1999), p.79–84.

Google Scholar

[17] N. Chiron, R. Guilet and E. Deydier: Water Res. 37(2003), p.3079–3086.

Google Scholar

[18] Y.S. Ho and G. Mckay: Chem. Eng. J. 70(1998), p.115–124.

Google Scholar

[19] C. Namasivayam and S. Sumithra: Ind. Eng. Chem. Res. 43(2004), p.7581–7587.

Google Scholar

[20] M. Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe and P. Lecloirec: Water Res. 30(1996), p.465–475.

DOI: 10.1016/0043-1354(95)00154-9

Google Scholar