Theoretical Study on the Mechanism of NH + HCNO Reaction

Article Preview

Abstract:

DFT B3LYP calculations with the 6-311G(d, p) basis set were carried out to explore the mechanism of the NH (X3Σ-) + HCNO reaction. On the basis of calculated reaction paths, the three reaction channels are predicted to occur via the following reaction steps. The NH radical initially attacks C atom of the HCNO radical, leading to an intermediate HC(NH)NO (a1), followed by formation of a bond between the H atom of NH (X3Σ-) radical and the N atom of HCNO, leading to the formation of product HNO + HCN. In addition to the H atom of NH (X3Σ-) radical migration in the intermediate HC(NH)NO (a1), the H atom migration from C atom to N atom leads to an intermediate HN(H)CNO (b), followed by rupture of H2N-CNO bond, leading to the products NH2 + CNO. The NH radical initially attacks N atom of the HCNO radical, leading to an intermediate HCN(NH)O (a3), followed by formation of the products CH2O + N2, through the intermediates d1, d2, d3, d4, e1, e2 and f. The CCSD(T)/ 6-311G(d,p) energetic results indicated that the total barrier of product 1, product 2 and product 3 is 32.8 kcal/mol, 89.5 kcal/mol, 40.0 kcal/mol, respectively. It is shown that P1(CH2O + N2), P3 (HCN + HNO) are the major product channels with a minor contribution from P2 (NH2 + CNO).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 396-398)

Pages:

997-1000

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wang, J.K. Yu, D.J. Ding, C.C. Sun, Theor.Chem.Acc., Vol.2 (2007), p.21.

Google Scholar

[2] W.H. Feng and J.F. Hershberger, J. Phys. Chem. A, Vol.113 (2009), p.3523.

Google Scholar

[3] M.Y. Choi, F. Dong, S.W. Han and R.E. Miller, J. Phys. Chem. A, Vol.112 (2008), p.7185.

Google Scholar

[4] W.H. Feng and J.F. Hershberger, J. Phys. Chem. A, Vol.111 (2007) , p.10654.

Google Scholar

[5] W.H. Feng and J.F. Hershberger, J. Phys. Chem. A, Vol.111 (2007), p.3831.

Google Scholar

[6] W.H. Feng and J.F. Hershberger, J. Phys. Chem. A, Vol.110 (2006), p.12184.

Google Scholar

[7] W.H. Feng, J.P. Meyer, J.F. Hershberger, J. Phys. Chem. A, Vol.110 (2006), p.4458.

Google Scholar

[8] P. Jensen, J. Mol. Spectrosc., Vol.101 (1983), p.422.

Google Scholar

[9] J. A. Miller; S. J. Klippenstein, P. Glarborg, Combust. Flame Vol.135 (2003), p.357.

Google Scholar

[10] N. Pinnavaia, M. J. Bramley, M. D. Su, W. H. Green, N. C. Handy; Mol. Phys., Vol.78 (1993), p.319.

Google Scholar

[11] J. H. Teles, G. Maier, J. B. A. Hess, L. J. Schaad, M.Winnewisser, B. P. Winnewisser, Chem. Ber., Vol.122 (1989), p.753.

DOI: 10.1002/cber.19891220425

Google Scholar

[12] T. Pasinszki, N. Kishimoto, K. Ohno, J. Phys. Chem., Vol.103 (1999), p.6746.

Google Scholar

[13] C. Wentrup, B. Gerecht, H. Briehl, Angew. Chem. Int. Ed. Engl., Vol.18 (1979), p.467.

DOI: 10.1002/anie.197904671

Google Scholar

[14] R. Wilmes, M. Winnewisser, J. Labelled Compd. Radiopharm, Vol.33 (1993), p.157.

Google Scholar

[15] W.H. Feng, J.P. Meyer, J.F. Hershberger, J. Phys. Chem. A, Vol.110 (2006), p.4458.

Google Scholar