Prediction of the Tertiary Structure of α-Glycosidase from Aspergillus niger by Homology Modeling

Article Preview

Abstract:

α-Glucosidases play critical role both in primary metabolism and in glycoconjugate biosynthesis and processing. In this paper, the reasonable three-dimensional molecular model of AglA was generated by homology modeling. This modeled protein is divided into five major structural domains, and the catalytic domain is classical (β/α) 8 barrel with the active site pocket positioned at its C-terminal side. With analyses of conserved residues and overlay of homology structures, the residues Tyr 662, Tyr527, Glu521, His238 and Tyr235 was predicted as the main substrate binding sites, and residues Asp490, Glu493 and Asp660 were deduced to be the acid/base catalytic residues.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

2160-2163

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Henrissat: Biochem. J. Vol. 280 (1991), p.309

Google Scholar

[2] B. Henrissat and A. Bairoch: Biochem. J. Vol. 316 (1996), p.695

Google Scholar

[3] A. L. Lovering, S. S. Lee, Y.W. Kim, S. G. Withers and N. C. J. Strynadka: J. Biol. Chem. Vol. 280 (2005), p.2105

Google Scholar

[4] K. Watanabe, Y. Hata, H. Kizaki, Y. Katsube and Y. Suzuki: J. Mol. Biol. Vol. 269 (1997), p.142

Google Scholar

[5] H.A. Ernst, L.L. Leggio, M. Willemoe, G. Leonard, P. Blum and S. Larsen: J. Mol. Biol. Vol. 358 (2006), p.1106

Google Scholar

[6] S. Lyann, Q.C. Roberto, E.S. Erwin, L.N. Buford and R.R. David: J. Mol. Biol. Vol. 375 (2008), p.782

Google Scholar

[7] A. Sali and T.L. Blundell: J. Mol. Biol. Vol. 234(1993), p.779

Google Scholar

[8] K.Arnold, L. Bordoli, J. Kopp and T. Schwede: Bioinformatics Vol.22 (2006), p.195

Google Scholar

[9] R.A. Laskowski, M.W. MacArthur, D.S. Moss and J.M. Thornton: J. App. Cryst. Vol.26 (1993), p.283

Google Scholar

[10] Wiederstein and M.J. Sippl: Nucleic Acids Res. Vol. 35 (2007), p.W407

Google Scholar

[11] S. Lyann, Q.C. Roberto, E.S. Erwin, L.N. Buford and R.R. David: J. Mol. Biol. Vol. 375 (2008), p.782

Google Scholar

[11] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang: Nucleic Acid Res. Vol.34 (2006), p.W116

DOI: 10.1093/nar/gkl282

Google Scholar