Effect of Sintering Atmosphere on the Dielectric Properties of BaTiO3 via Boron-Addition Liquid-Phase Sintering

Article Preview

Abstract:

Boron-doped BaTi1-xB2xO3+X materials were prepared via organic chelating chemistry using alcohols as solvents/ligands. When sintered under air at 900 °C, those materials were light-yellow colored, and yielded the dielectric properties comparable to those of pristine BaTiO3 sintered at 1300 °C. However, they displayed blue/gray color after sinterd under Ar or a reductive atmosphere like 5%H2/Ar at T > 850 °C, and the dielectric properties dramatically changed compared with the samples sintered under air, suggesting the transformation of insulating BaTiO3 into an semiconductor. By contrast, pristine BaTiO3 samples differed slightly in the dielectric properties when the sintering atmosphere was shifted from air to Ar or 5%H2/Ar. The possible mechanism of the “reduction” behavior in BaTi1-xB2xO3+X materials (the role of boron in reduction of Ti4+ to Ti3+ in BaTiO3 lattice) is under investigation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

842-846

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.-I Hsiang, C.-S. His, C.-C. Huang, and S.-L. Fu: J. of Alloys Compd. Vol. 459 (2008), p.307

Google Scholar

[2] D. Prakash, B.P. Sharma, T.R. Rama Mohan, and P. Gopalan: J. Solid State Chem. Vol. 155 (2000), p.86

Google Scholar

[3] C.-H. Wang: Jpn. J. Appl. Phys. Vol. (41) 2002, p.5317

Google Scholar

[4] T.R. Armstrong, K.A. Young, and R.C. Buchanan: J. Am. Ceram. Soc. Vol. 73 (1990), p.700

Google Scholar

[5] H.-P. Jeon, S.-K. Lee, S.-W. Kim, and D.-K. Choi: Mater. Chem. Phys. Vol. 94 (2005), p.185

Google Scholar

[6] S. M. Rhim, S. Hong, H. Bak, and O. K. Kim: J. Am. Ceram. Soc. Vol. 83 (2000), p.1145

Google Scholar

[7] S. M. Rhim, H. Bak, S. Hong, and O. K. Kim: J. Am. Ceram. Soc. Vol. 83(2000), p.3009

Google Scholar

[8] Y. Kuromitsu, S. F. Wang, S. Yashikawa, and R. E. Newnham: J. Am. Ceram. Soc. Vol.77(1994), p.493

Google Scholar

[9] J.-H. Lee, Y.-W. Heo, J.-A. Lee, Y.-D. Ryoo, J.-J. Kim, and S.-H. Cho: Solid State Ionics Vol. 101-103(1997), p.787

Google Scholar

[10] X.X. Wang, H.L.W. Chan, G.K.H. Pang, C.L. Choy: Mater. Sci. Eng., B Vol. 100 (2003), p.286

Google Scholar

[11] J. Qi, W. Chen, H. Wang, Y. Wang, L. Li, and H.L.W. Chan: Sens. Actuators A Vol. 116 (2004), p.215

Google Scholar

[12] J.S. Park, M.H. Yang, and Y.H. Han: Mater. Chem. Phys. Vol. 104 (2007), p.261

Google Scholar

[13] S. Wang, X. Liu, J. Chen, L. Gao, and J. Zhang: Beijing Univ. Chem. Technol. Vol. 31 (2004), p.32

Google Scholar

[14] S. Wada, H. Yasuno, T. Hoshina, S.-M. Nam, H. Kakemoto, and T. Tsurumi: Jpn. J. Appl. Phys. Vol. 42 (2003), p.6188

DOI: 10.1143/jjap.42.6188

Google Scholar

[15] A. Shi, W. Yan, Y. Li, and K. Huang: J. Cent. South. Univ. Technol. Vol. 15 (2008), p.334

Google Scholar