The Biotechnology for Odours-A Review

Article Preview

Abstract:

This article provides an overview about the microbes selecting, types of bioreactors, the treatment condition, etc. which influence the odors abatement effect. In the recent past, many highly efficiency microorganisms on the actual governance of malodorous gases have been selected and trained. Among different bioreactor configurations, biofilters, biotrickling filters and bioscrubbers are most common ones. The membrane bioreactor and the three phase fluidised bed bioreactor as new bioreactors have broad development prospects. Finally, this review also provides how to insights into future R&D needs in this area.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

1432-1437

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Patricio O, Fernando A, Christian C, et al. Aroca Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus[J]. Process Biochemistry, 39: 165-170. (2003).

DOI: 10.1016/s0032-9592(03)00050-5

Google Scholar

[2] Joanna E B, Simon A P, Richard M S. Developments in odour control and waste gas treatment biotechnology: a review [J]. Biotechnology Advances, (19): 35-63. (2001).

DOI: 10.1016/s0734-9750(00)00058-6

Google Scholar

[3] Schlegelmilch M, Streese J, Stegmann R. Odour management and treatment technologies: An overview[J]. Waste Man agement, 25: 928-939. (2005).

DOI: 10.1016/j.wasman.2005.07.006

Google Scholar

[4] Sheridan B A, Colligan JG, Curran TP, et al. Biofiltration of exhaust ventilation air from pig units[C]/. Proceedingsof the 2nd International Conference on Air Pollution from Agricultural Operations, ASAE, St. Joseph, Bloomington, MN, USA, 384-390(2000).

Google Scholar

[5] Sandeep Mudliar*, et al., Bioreactors for treatment of VOCs and odours-A review[J]. Journal of Environmental Management911039-1054(2010).

Google Scholar

[6] Delhomenie M.C., Heitz,M.,. Biofiltration of air: a review. Critical Reviews in Biotechnology 25, 53-72. (2005).

Google Scholar

[7] Kumar A, Dewulf J, Langenhove HV. Membrane-based biological wastegas treatment[J]. Chemical Engineering Journal, 136: 82-91. (2008a).

Google Scholar

[8] Kwang J O, Donguk K. Development of effective hydrogen sulphide removing equipment using Thiobacillus sp. IW [J]. Environmental Pollution, 99: 87-92. (1998).

DOI: 10.1016/s0269-7491(97)00168-1

Google Scholar

[9] Shim JS, Jung JT, Sofer S, Lakhwala F. Oxidation of ethanol vapours in a spiral bioreactor[J]. Chem Technol Biotechno, 64: 49-54. (1995).

DOI: 10.1002/jctb.280640109

Google Scholar

[10] Ritchie BJ, Hill GA. Biodegradation of phenol-polluted air using an external loop airlift bioreactor[J]. ChemTechnol Biotechnol, 62: 339-344. (1995).

DOI: 10.1002/jctb.280620405

Google Scholar

[11] M. Schlegelmilcha, *et al., Odour control at biowaste composting facilities[J]. Waste Management 25917-927(2005).

Google Scholar

[12] Delhomenie M C, Bibeau L, Gendron J, et al. Airtreatment by biofiltration: influence of nitrogen concentration on operational parameters[J]. Industrial Engineering Chemistry Research, 40: 5405-5414. (2001a).

DOI: 10.1021/ie0011270

Google Scholar

[13] Kennes C, Cox HHJ, Doddema HJ, et al. Design and performance of biofilters for the removal of alkylbenzene vapors[J]. Chem. Technol. Biotechnol, 66: 300-304. (1996).

DOI: 10.1002/(sici)1097-4660(199607)66:3<300::aid-jctb495>3.0.co;2-9

Google Scholar

[14] Kim N J, Hirai M, Shoda M. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters[J]. Hazard, Mater, B, 72: 77-90. (2000).

DOI: 10.1016/s0304-3894(99)00160-0

Google Scholar

[15] Martín Ramírez a, *, Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology 1004989-4995(2009).

DOI: 10.1016/j.biortech.2009.05.022

Google Scholar

[16] Chung YC, Huang C, Tseng CP, et al. Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter[J]. Chemosphere (41): 329-336. (2000).

DOI: 10.1016/s0045-6535(99)00490-7

Google Scholar

[17] Kazuhiro S, Satoshi O, Takashi O, et al. Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization System [J]. Fermentation and bioengineering, 80(6): 592-598. (1995).

DOI: 10.1016/0922-338x(96)87737-3

Google Scholar

[18] Padoley KV, Rajvaidya AS, Subbarao TVet al. Biodegradation of pyridine in a completely mixed activated sludge process[J]. Bioresource Technology, 9: 1225-1236. (2006).

DOI: 10.1016/j.biortech.2005.05.020

Google Scholar

[19] Chung Y, Huang C, Tseng C. Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter[J]. ChemTechnol Biotechnol, (69): 58 -62. (1997).

DOI: 10.1002/(sici)1097-4660(199705)69:1<58::aid-jctb660>3.0.co;2-h

Google Scholar

[20] Cho KS, Ryu HW, Lee NY. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillusthioxidans[J]. Biosci Bioeng(1): 25-31. (2000).

DOI: 10.1016/s1389-1723(00)80029-8

Google Scholar

[21] Martín R, José Manuel G, Germán A. Domingo canter removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology (100) 4989-4995. (2009).

DOI: 10.1016/j.biortech.2009.05.022

Google Scholar

[22] Xie B, Liang SB, Tang Y, et al. Petrochemical wastewater odor treatment by biofiltration [J]. Bioresource Technology, (100): 2204-2209. (2009).

DOI: 10.1016/j.biortech.2008.10.035

Google Scholar

[23] Ying-Chien Chung a, et al., Removal of high concentration of NH3 and coexistent H2S by biological activated carbon(BAC)biotrickling filter[J]. Bioresource Technology 96, 1812-1820(2005).

DOI: 10.1016/j.biortech.2005.01.003

Google Scholar

[24] Ma YL, Yang BL, Zhao J L. Removal of H2S by Thiobacillus denitrificans immobilizedon different matrices[J]. Bioresource Technology, (97): 2041-2046. (2006).

DOI: 10.1016/j.biortech.2005.09.023

Google Scholar

[25] Busca G, Pistarino C. Abatement of ammonia and amines from waste gases: a summary [J]Journal of Loss Prevention in the Process Industries, (16): 157-163. (2003).

DOI: 10.1016/s0950-4230(02)00093-1

Google Scholar

[26] Lee E Y, Cho KS, Wook H R. Simultaneous Removal of H2S and NH3 in Biofilter Inoculated with Acidithiobacillus thiooxidans TAS[J]. Journal of bioscience and bioengineering. 99(6): 611-615. (2005).

DOI: 10.1263/jbb.99.611

Google Scholar

[27] Pandey RA, Padoley KV, Mukherji S S, et al. Subbarao. Biotreatment of waste gas containing pyridine in a biofilter[J]. Bioresource Technology, (98 ): 2258-2267. (2007).

DOI: 10.1016/j.biortech.2006.05.015

Google Scholar

[28] Ho KL, Chung YC, Lin YH, et al. Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1[J]. Chemosphere 72 : 250-256. (2008).

DOI: 10.1016/j.chemosphere.2008.01.044

Google Scholar

[29] Kim SG, Bae HS, Lee ST. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways, Arch[J]. Microbiol, (176): 271-277. (2001).

DOI: 10.1007/s002030100319

Google Scholar

[30] Jang MH, Basran J, Serutton NS. The reaction of trimethylamine dehydrogenase withtrimethylamine[J]. Biol, Chem. (274): 13147-13154. (1999).

DOI: 10.1074/jbc.274.19.13147

Google Scholar

[31] Zhang L, Hirai M, Shoda M. Removal characteristics of dimethylsulfide by a mixture of Hypomicrobium sp. I55 and Pseudomonas acidovorans DMR-11[J]. Ferment Bioeng. (74): 174-8. (1992).

DOI: 10.1016/0922-338x(92)90079-a

Google Scholar

[32] Cho K, Hirai M, Shoda M. Degradation characteristics of hydrogen sulfide, metanethiol, dimethylsulfide by thiobacillus thioparus DW44 isolated from peat biofilter[J]. Ferment BioClassen 43 (1): 111-118. (1999).

DOI: 10.1016/0922-338x(91)90248-f

Google Scholar

[33] Kanagawa T, Mikami E. Removal of methanethiol dimethylsulfideand hydrogen sulfide from contaminated air by Thiobacillusthioparus TK-m. Appl Environ Microbiol 55: 555-563. (1989).

DOI: 10.1128/aem.55.3.555-558.1989

Google Scholar

[34] Bram Sercua, et al., Inoculation and start-up of a biotricking filter removing dimethyl sulfide[J] . Chemical Engineering Journal 113, 127-134(2005).

DOI: 10.1016/j.cej.2005.04.008

Google Scholar

[35] Inge De Bo*, et al., Removal of dimethyl sulfide from waste air in a membrane bioreactor[J] Desalination 148, 28 l-287(2002).

DOI: 10.1016/s0011-9164(02)00715-4

Google Scholar

[36] Liu B, Yan DD, Bi XM. Isolates identification and Application of Methanethiol-Degrading Microorganisms [J]. The research of Chinese environmental science 20(1): 34-39. (2007).

Google Scholar

[37] Pandey R, Gangane R, Mudliar SN, et al. Treatment of waste gas containing monomethylamine in a biofilter enriched with Pseudomonas mendocina[J]. Waste Management 26: 233-244. (2006).

DOI: 10.1016/j.wasman.2005.01.024

Google Scholar

[38] Cho KS, Ryu H W, Lee N Y. Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thiooxidans [J]. Jorunal of bioscienced bioengineering, 90 (1): 25-31. (2000).

DOI: 10.1016/s1389-1723(00)80029-8

Google Scholar

[39] Gribbins MJ, Loehr RC, Effect of media nitrogen concentration onbiofilter performance[J]. Journal of Air Waste Management Association, 48: 216-226. (1998).

DOI: 10.1080/10473289.1998.10463676

Google Scholar

[40] Chiu-Yu Cheng et al Diversity of the bacterial community in a bioreactor during ammonia gas removal[J]. Bioresource Technology 101, 434-437(2010).

DOI: 10.1016/j.biortech.2009.08.007

Google Scholar

[41] Ranasinghe M A, Gostomski A. A novel reactor for exploring the effect of water content on biofilter degradation rates[J]. Environmental Progress, 22(2): 103-109. (2003).

DOI: 10.1002/ep.670220212

Google Scholar