[1]
Patricio O, Fernando A, Christian C, et al. Aroca Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus[J]. Process Biochemistry, 39: 165-170. (2003).
DOI: 10.1016/s0032-9592(03)00050-5
Google Scholar
[2]
Joanna E B, Simon A P, Richard M S. Developments in odour control and waste gas treatment biotechnology: a review [J]. Biotechnology Advances, (19): 35-63. (2001).
DOI: 10.1016/s0734-9750(00)00058-6
Google Scholar
[3]
Schlegelmilch M, Streese J, Stegmann R. Odour management and treatment technologies: An overview[J]. Waste Man agement, 25: 928-939. (2005).
DOI: 10.1016/j.wasman.2005.07.006
Google Scholar
[4]
Sheridan B A, Colligan JG, Curran TP, et al. Biofiltration of exhaust ventilation air from pig units[C]/. Proceedingsof the 2nd International Conference on Air Pollution from Agricultural Operations, ASAE, St. Joseph, Bloomington, MN, USA, 384-390(2000).
Google Scholar
[5]
Sandeep Mudliar*, et al., Bioreactors for treatment of VOCs and odours-A review[J]. Journal of Environmental Management911039-1054(2010).
Google Scholar
[6]
Delhomenie M.C., Heitz,M.,. Biofiltration of air: a review. Critical Reviews in Biotechnology 25, 53-72. (2005).
Google Scholar
[7]
Kumar A, Dewulf J, Langenhove HV. Membrane-based biological wastegas treatment[J]. Chemical Engineering Journal, 136: 82-91. (2008a).
Google Scholar
[8]
Kwang J O, Donguk K. Development of effective hydrogen sulphide removing equipment using Thiobacillus sp. IW [J]. Environmental Pollution, 99: 87-92. (1998).
DOI: 10.1016/s0269-7491(97)00168-1
Google Scholar
[9]
Shim JS, Jung JT, Sofer S, Lakhwala F. Oxidation of ethanol vapours in a spiral bioreactor[J]. Chem Technol Biotechno, 64: 49-54. (1995).
DOI: 10.1002/jctb.280640109
Google Scholar
[10]
Ritchie BJ, Hill GA. Biodegradation of phenol-polluted air using an external loop airlift bioreactor[J]. ChemTechnol Biotechnol, 62: 339-344. (1995).
DOI: 10.1002/jctb.280620405
Google Scholar
[11]
M. Schlegelmilcha, *et al., Odour control at biowaste composting facilities[J]. Waste Management 25917-927(2005).
Google Scholar
[12]
Delhomenie M C, Bibeau L, Gendron J, et al. Airtreatment by biofiltration: influence of nitrogen concentration on operational parameters[J]. Industrial Engineering Chemistry Research, 40: 5405-5414. (2001a).
DOI: 10.1021/ie0011270
Google Scholar
[13]
Kennes C, Cox HHJ, Doddema HJ, et al. Design and performance of biofilters for the removal of alkylbenzene vapors[J]. Chem. Technol. Biotechnol, 66: 300-304. (1996).
DOI: 10.1002/(sici)1097-4660(199607)66:3<300::aid-jctb495>3.0.co;2-9
Google Scholar
[14]
Kim N J, Hirai M, Shoda M. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters[J]. Hazard, Mater, B, 72: 77-90. (2000).
DOI: 10.1016/s0304-3894(99)00160-0
Google Scholar
[15]
Martín Ramírez a, *, Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology 1004989-4995(2009).
DOI: 10.1016/j.biortech.2009.05.022
Google Scholar
[16]
Chung YC, Huang C, Tseng CP, et al. Biotreatment of H2S- and NH3-containing waste gases by co-immobilized cells biofilter[J]. Chemosphere (41): 329-336. (2000).
DOI: 10.1016/s0045-6535(99)00490-7
Google Scholar
[17]
Kazuhiro S, Satoshi O, Takashi O, et al. Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization System [J]. Fermentation and bioengineering, 80(6): 592-598. (1995).
DOI: 10.1016/0922-338x(96)87737-3
Google Scholar
[18]
Padoley KV, Rajvaidya AS, Subbarao TVet al. Biodegradation of pyridine in a completely mixed activated sludge process[J]. Bioresource Technology, 9: 1225-1236. (2006).
DOI: 10.1016/j.biortech.2005.05.020
Google Scholar
[19]
Chung Y, Huang C, Tseng C. Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter[J]. ChemTechnol Biotechnol, (69): 58 -62. (1997).
DOI: 10.1002/(sici)1097-4660(199705)69:1<58::aid-jctb660>3.0.co;2-h
Google Scholar
[20]
Cho KS, Ryu HW, Lee NY. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillusthioxidans[J]. Biosci Bioeng(1): 25-31. (2000).
DOI: 10.1016/s1389-1723(00)80029-8
Google Scholar
[21]
Martín R, José Manuel G, Germán A. Domingo canter removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology (100) 4989-4995. (2009).
DOI: 10.1016/j.biortech.2009.05.022
Google Scholar
[22]
Xie B, Liang SB, Tang Y, et al. Petrochemical wastewater odor treatment by biofiltration [J]. Bioresource Technology, (100): 2204-2209. (2009).
DOI: 10.1016/j.biortech.2008.10.035
Google Scholar
[23]
Ying-Chien Chung a, et al., Removal of high concentration of NH3 and coexistent H2S by biological activated carbon(BAC)biotrickling filter[J]. Bioresource Technology 96, 1812-1820(2005).
DOI: 10.1016/j.biortech.2005.01.003
Google Scholar
[24]
Ma YL, Yang BL, Zhao J L. Removal of H2S by Thiobacillus denitrificans immobilizedon different matrices[J]. Bioresource Technology, (97): 2041-2046. (2006).
DOI: 10.1016/j.biortech.2005.09.023
Google Scholar
[25]
Busca G, Pistarino C. Abatement of ammonia and amines from waste gases: a summary [J]Journal of Loss Prevention in the Process Industries, (16): 157-163. (2003).
DOI: 10.1016/s0950-4230(02)00093-1
Google Scholar
[26]
Lee E Y, Cho KS, Wook H R. Simultaneous Removal of H2S and NH3 in Biofilter Inoculated with Acidithiobacillus thiooxidans TAS[J]. Journal of bioscience and bioengineering. 99(6): 611-615. (2005).
DOI: 10.1263/jbb.99.611
Google Scholar
[27]
Pandey RA, Padoley KV, Mukherji S S, et al. Subbarao. Biotreatment of waste gas containing pyridine in a biofilter[J]. Bioresource Technology, (98 ): 2258-2267. (2007).
DOI: 10.1016/j.biortech.2006.05.015
Google Scholar
[28]
Ho KL, Chung YC, Lin YH, et al. Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1[J]. Chemosphere 72 : 250-256. (2008).
DOI: 10.1016/j.chemosphere.2008.01.044
Google Scholar
[29]
Kim SG, Bae HS, Lee ST. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways, Arch[J]. Microbiol, (176): 271-277. (2001).
DOI: 10.1007/s002030100319
Google Scholar
[30]
Jang MH, Basran J, Serutton NS. The reaction of trimethylamine dehydrogenase withtrimethylamine[J]. Biol, Chem. (274): 13147-13154. (1999).
DOI: 10.1074/jbc.274.19.13147
Google Scholar
[31]
Zhang L, Hirai M, Shoda M. Removal characteristics of dimethylsulfide by a mixture of Hypomicrobium sp. I55 and Pseudomonas acidovorans DMR-11[J]. Ferment Bioeng. (74): 174-8. (1992).
DOI: 10.1016/0922-338x(92)90079-a
Google Scholar
[32]
Cho K, Hirai M, Shoda M. Degradation characteristics of hydrogen sulfide, metanethiol, dimethylsulfide by thiobacillus thioparus DW44 isolated from peat biofilter[J]. Ferment BioClassen 43 (1): 111-118. (1999).
DOI: 10.1016/0922-338x(91)90248-f
Google Scholar
[33]
Kanagawa T, Mikami E. Removal of methanethiol dimethylsulfideand hydrogen sulfide from contaminated air by Thiobacillusthioparus TK-m. Appl Environ Microbiol 55: 555-563. (1989).
DOI: 10.1128/aem.55.3.555-558.1989
Google Scholar
[34]
Bram Sercua, et al., Inoculation and start-up of a biotricking filter removing dimethyl sulfide[J] . Chemical Engineering Journal 113, 127-134(2005).
DOI: 10.1016/j.cej.2005.04.008
Google Scholar
[35]
Inge De Bo*, et al., Removal of dimethyl sulfide from waste air in a membrane bioreactor[J] Desalination 148, 28 l-287(2002).
DOI: 10.1016/s0011-9164(02)00715-4
Google Scholar
[36]
Liu B, Yan DD, Bi XM. Isolates identification and Application of Methanethiol-Degrading Microorganisms [J]. The research of Chinese environmental science 20(1): 34-39. (2007).
Google Scholar
[37]
Pandey R, Gangane R, Mudliar SN, et al. Treatment of waste gas containing monomethylamine in a biofilter enriched with Pseudomonas mendocina[J]. Waste Management 26: 233-244. (2006).
DOI: 10.1016/j.wasman.2005.01.024
Google Scholar
[38]
Cho KS, Ryu H W, Lee N Y. Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thiooxidans [J]. Jorunal of bioscienced bioengineering, 90 (1): 25-31. (2000).
DOI: 10.1016/s1389-1723(00)80029-8
Google Scholar
[39]
Gribbins MJ, Loehr RC, Effect of media nitrogen concentration onbiofilter performance[J]. Journal of Air Waste Management Association, 48: 216-226. (1998).
DOI: 10.1080/10473289.1998.10463676
Google Scholar
[40]
Chiu-Yu Cheng et al Diversity of the bacterial community in a bioreactor during ammonia gas removal[J]. Bioresource Technology 101, 434-437(2010).
DOI: 10.1016/j.biortech.2009.08.007
Google Scholar
[41]
Ranasinghe M A, Gostomski A. A novel reactor for exploring the effect of water content on biofilter degradation rates[J]. Environmental Progress, 22(2): 103-109. (2003).
DOI: 10.1002/ep.670220212
Google Scholar