An Improved Approach of Color Edge Detection Based on Robustness of Cell Neural Network

Article Preview

Abstract:

For the disadvantage of cell neural network (CNN) method which can not directly deal with color images, we present a new color image edge detection algorithm according to CNN model. Through robustness analysis for CNN template, a CNN theorem be carried out which can compute in the RGB color space. The experimental results show that our approach can effectively carry out edge extraction and locates accurately.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

1879-1882

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dikbas S. Arid T. Altunbasak Y. Chrominance Edge Preserving Grayscale Transformation with Approximate First Principal Component for Color Edge Detection. In: Proceedings of IEEE International Conference on Image Processing [C], San Antonio, USA, 2007: II - 261 - II - 264.

DOI: 10.1109/icip.2007.4379142

Google Scholar

[2] Bo Li, Zhiyuan Zeng, Jianzhong Zhou, Mu Zhou. An Adaptive Algorithm for License Plate Orientation and Character Segmentation. In: Proceedings of PACIIA '08 [C], Wuhan, China, 2008: 533 - 537.

DOI: 10.1109/paciia.2008.186

Google Scholar

[3] Evans A N. Liu X U. A morphological gradient approach to color edge detection [J]. IEEE Transactions on Imaging Processing, 2006, 15(6): 1454 - 1463.

DOI: 10.1109/tip.2005.864164

Google Scholar

[4] M. C. d'Ornellas, A multiscale gradient approach for color-based morphological segmentation, in Proc. Int. Conf. Pattern Recognit., vol. 3, 2000, p.363–366.

Google Scholar

[5] P. E. Trahanias and A. N. Venetsanopoulos, Color edge detection using vector order statistics, IEEE Trans. Image Process., vol. 2, no. 2, p.259–264, Feb. (1993).

DOI: 10.1109/83.217230

Google Scholar

[6] Trahanias.P. E and Venetsanopoulos.A. N, Vector order statistics operators as color edge detectors, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 26, no. 1, p.135–143, Feb. (1996).

DOI: 10.1109/3477.484445

Google Scholar

[7] A. N. Evans, Morphological gradient operators for color images, in IEEE Int. Conf. Image Process., vol. III, 2004, p.3089–3092.

Google Scholar

[8] Dony R D. Wesolkowski S. Edge detection on color images us-ing RGB vector angle. In: Proceedings of IEEE Canadian Conference on Electrical &Computer Engineering[C], Edmon-ton, Canada, 1999: 289-292.

DOI: 10.1109/ccece.1999.808005

Google Scholar

[9] Rafael C Gonzalez, Richard E Woods. Digital Image Processing[M]. Beijing: Pearson Education , 2003: 224-246.

Google Scholar

[10] L. O. Chua and L. Yang. Cellular neural networks: Theory and applications [J]. IEEE Trans. Circuits Syst, 1988, 35: 1257-1290.

DOI: 10.1109/31.7600

Google Scholar

[11] L. O. Chua. CNN: A vision of complex [J]. Int J Bi-furcation and Chaos, 1997, 7(10): 2219-242.

Google Scholar