A Survey: Clustering Ensemble Selection

Article Preview

Abstract:

Traditional clustering ensemble combines all of the available clustering partitions to get the final clustering result. But in supervised classification area,it has been known that selective classifier ensembles can always achieve better solutions.Following the selective classifier ensembles,the question of clustering ensemble is defined as clustering ensemble selection.The paper introduces the concept of clustering ensemble selection and gives the survey of clustering ensemble selection algorithms.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

2760-2763

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Halkidi,D. Gunopulos,M. Vazirgiannis,N. Kumar, and,C. Domeniconi, A clustering framework based on subjective and objective validity criteria, , TKDD, vol. 1, no. 4, (2008).

DOI: 10.1109/icdm.2005.4

Google Scholar

[2] Javad, Azimi, XiaoliFern, Adaptive Cluster Ensemble Selection, In Proceedings of International Joint Conference on Artificial Intellegence, IJCAI 2009: 993-997.

Google Scholar

[3] Fred A L, Jain A K, Data clustering using evidence accumulation, , Proceedings of the 16th International Conference on Pattern Recognition (ICPR 2002). volume 4, 2002: 276-280.

Google Scholar

[4] A. Strehl, J. Ghosh, Cluster Ensemble-a knowledge reuse framework for combining Multiple partitions, Journal on Machine Learning Research(JMLR), vol 3, 2002: 583-617.

Google Scholar

[5] Xiaoli Z. Fern, Carla E. Brodley,  Solving cluster ensemble problems by bipartite graph partitioning, in Proceedings of 21th International Conference on Machine learning (ICML2004): 281-288.

DOI: 10.1145/1015330.1015414

Google Scholar

[6] Hanan Ayad, Mohamed Kamel. Finding natural clusters using multi-clusterer combiner based on shared nearest neighbors", Proceedings of the 4th International Workshop on Multiple Classifier Systems (MCS, 03), 2003. Volume 2709 of Lecture Notes in Computer Science. Springer, 2003: 166-175.

DOI: 10.1007/3-540-44938-8_17

Google Scholar

[7] B Fischer, J M Buhmann. "Path-based Clustering for Grouping of Smooth Curves and Texture Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(4): 513-518.

DOI: 10.1109/tpami.2003.1190577

Google Scholar

[8] A Topchy, A K Jain, W Punch. A Mixture Model for Clustering Ensembles,. Proceedings of the 4th SIAM International Conference on Data Mining, 2004: 379-390.

DOI: 10.1137/1.9781611972740.35

Google Scholar

[9] Chris Ding, Xiaofeng He, Horst D. Simon. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering"Proc. SIAM Int'l Conf. Data Mining (SDM, 05), April 2005: 606-610.

DOI: 10.1137/1.9781611972757.70

Google Scholar

[10] Tao Li and Chris Ding. The Relationships Among Various Nonnegative Matrix Factorization Methods for Clustering"Proc. IEEE Int'l Conf. on Data Mining (ICDM, 06) 2006: 362-371.

DOI: 10.1109/icdm.2006.160

Google Scholar

[11] X. Fern and Wei Lin. Cluster Ensemble Selection. Statistical Analysis and Data Mining, 2008 1(3): 128-141.

DOI: 10.1002/sam.10008

Google Scholar

[12] S. Hadjitodorov L.I. Kuncheva, and L.P. Todorova. Moderate Diversity for Better Cluster Ensembles. Information Fusion Journal, 2006, 7(3): 264-275.

DOI: 10.1016/j.inffus.2005.01.008

Google Scholar

[13] Yi Hong, Sam Kwong, Hanli Wang, Qingsheng Ren. Resampling-based selective clustering ensembles. Pattern Recognition Letters. 2009: 298-305.

DOI: 10.1016/j.patrec.2008.10.007

Google Scholar

[14] Tao Li, Chris Ding. Weighted Consensus Clustering, SIAM DM , 2008: 798-809.

Google Scholar

[15] Zhi-Hua Zhou, Wei Tang. Clusterer ensemble. Knowledge-Based Systems, 2006 (19): 77–83.

DOI: 10.1016/j.knosys.2005.11.003

Google Scholar