[1]
V. De and S. Borkar, Technology and design challenges for low power and high performance, in Proc. Int. Symp. Low Power Electronics and Design, 1999, p.163–168.
DOI: 10.1145/313817.313908
Google Scholar
[2]
K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New York: Wiley, 2000, ch. 5, p.214–219.
Google Scholar
[3]
C. Mead, Scaling of MOS technology to submicrometer feature sizes, Analog Integrated Circuits Signal Process., vol. 6, p.9–25, (1994).
DOI: 10.1007/bf01250732
Google Scholar
[4]
R. Dennard et al., Design of ion-implanted MOSFET's with very small physical dimensions, IEEE J. Solid-State Circuits, vol. SC-9, p.256, Oct. (1974).
DOI: 10.1109/jssc.1974.1050511
Google Scholar
[5]
J. Brews, High Speed Semiconductor Devices, S.M. Sze, Ed. New York: Wiley, 1990, ch. 3.
Google Scholar
[6]
(2001) International Technology Roadmap for Semiconductors. International SEMATECH, Austin, TX. [Online]. Available: http: /public. itrs. net.
Google Scholar
[7]
S. Thompson, P. Packan, and M. Bohr, Linear versus saturated drive current: Tradeoffs in super steep retrograde well engineering, in Dig. Tech. Papers Symp. VLSI Technology, 1996, p.154–155.
DOI: 10.1109/vlsit.1996.507830
Google Scholar
[8]
S. Venkatesan, J.W. Lutze, C. Lage, andW. J. Taylor, Device drive current degradation observed with retrograde channel profiles, in Proc. Int. Electron Devices Meeting, 1995, p.419–422.
DOI: 10.1109/iedm.1995.499228
Google Scholar
[9]
J. Jacobs and D. Antoniadis, Channel profile engineering for MOSFET's with 100 nm channel lengths, IEEE Trans. Electron Devices, vol. 42, p.870–875, May (1995).
DOI: 10.1109/16.381982
Google Scholar
[10]
W. Yeh and J. Chou, Optimum halo structure for sub-0. 1m CMOSFET's, IEEE Trans. Electron Devices, vol. 48, p.2357–2362, Oct. (2001).
DOI: 10.1109/16.954477
Google Scholar
[11]
A. Keshavarzi, K. Roy, and C. F. Hawkins, Intrinsic leakage in low power deep submicron CMOS ics, in Proc. Int. Test Conf., 1997, p.146–155.
DOI: 10.1109/test.1997.639607
Google Scholar
[12]
R. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996, ch. 6, p.235–300.
Google Scholar
[13]
A. S. Grove, Physics and Technology of Semiconductor Devices. New York: Wiley, (1967).
Google Scholar
[14]
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, p.94–95.
Google Scholar
[15]
Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, p.120–128.
Google Scholar
[16]
J. M. Rabaey, Digital Integrated Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1996, ch. 2, p.55–56.
Google Scholar
[17]
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, p.143–144.
Google Scholar
[18]
R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, Design of ion-implanted MOSFETs with very small physical dimensions, IEEE J. Solid-State Circuits, vol. SC-9, p.256, (1974).
DOI: 10.1109/jssc.1974.1050511
Google Scholar
[19]
R. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996, ch. 18, p.680–681.
Google Scholar
[20]
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, p.130.
Google Scholar
[21]
V. De, Y. Ye, A. Keshavarzi, S. Narendra, J. Kao, D. Somasekhar, R. Nair, and S. Borkar, Techniques for leakage power reduction, in Design of High-Performance Microprocessor Circuits, A. Chandrakasan, W. Bowhill, and F. Fox, Eds. Piscataway, NJ: IEEE, 2001, ch. 3, p.48.
DOI: 10.1201/9780849386046-14
Google Scholar
[22]
S. Chung and C. -T Li, An analytical threshold-voltage model of trench-isolated MOS devices with nonuniformly doped substrates, IEEE Trans. Electron Devices, vol. 39, p.614–622, Mar. (1992).
DOI: 10.1109/16.123486
Google Scholar
[23]
D. Fotty, MOSFET Modeling with SPICE. Englewood Cliffs, NJ: Prentice-Hall, 1997, ch. 6, p.113–115.
Google Scholar
[24]
BSIM Group. MOSFET Model. Univ. California, Berkeley. [Online]. Available: http: /www-device. eecs. berkeley. edu/~bsim3.
Google Scholar
[25]
D. Fotty, MOSFET Modeling with SPICE. Englewood Cliffs, NJ: Prentice-Hall, 1997, ch. 11, p.399.
Google Scholar
[26]
K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New York: Wiley, 2000, ch. 2, p.26–26.
Google Scholar
[27]
J. Mandelman and J. Alsmeir, Anomalous narrow channel effect in trench-isolated burried channel P-Mosfets, IEEE Electron Device Lett., vol. 15, p.496–498, Dec. (1994).
DOI: 10.1109/55.338415
Google Scholar
[28]
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 3, p.140–143.
Google Scholar
[29]
Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, p.95–97.
Google Scholar
[30]
K. Schuegraf and C. Hu, Hole injection Sio2 breakdown model for very low voltage lifetime extrapolation, IEEE Trans. Electron Devices, vol. 41, p.761–767, May (1994).
DOI: 10.1109/16.285029
Google Scholar
[31]
BSIM Group. BSIM4. 2. 1 MOSFET Model. Univ. California, Berkeley. [Online]. Available: http: /www-device. eecs. berkeley. edu/~bsim3.
Google Scholar
[32]
K. Cao,W. -C Lee,W. Liu, X. Jin, P. Su, S. Fung, J. An, B. Yu, and C. Hu, BSIM4 gate leakage model including source drain partiotion, in Tech. Dig. Int. Electron Devices Meeting, 2000, p.815–818.
DOI: 10.1109/iedm.2000.904442
Google Scholar
[33]
F. Hamzaoglu and M. Stan, Circuit-level techniques to control gate leakage for sub-100 nm CMOS, in Proc. Int. Symp. Low Power Design, 2002, p.60–63.
DOI: 10.1109/lpe.2002.146710
Google Scholar
[34]
N. Yang, W. Henson, and J. Hauser, Modeling study of ultrathin gate oxides using tunneling current and capacitance-voltage measurement in MOS Devices, IEEE Trans. Electron Devices, vol. 46, p.1464–1471, July (1999).
DOI: 10.1109/16.772492
Google Scholar
[35]
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, p.97–99.
Google Scholar
[36]
Fundamentals of Modern VLSI Devices. New York: Cambridge Univ. Press, 1998, ch. 2, p.99–100.
Google Scholar
[37]
K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design. New York: Wiley, 2000, ch. 2, p.28–29.
Google Scholar
[38]
Low-Power CMOS VLSI Circuit Design. New York: Wiley, 2000, ch. 2, p.27–28.
Google Scholar
[39]
K. Nose, M. Hirabayashi, H. Kawaguchi, S. Lee, and T. Sakurai, V -Hopping scheme to reduce subthreshold leakage for low-power processors, IEEE J. Solid-State Circuits, vol. 37, p.413–419, Mar. (2002).
DOI: 10.1109/4.987094
Google Scholar
[40]
Y. Taur, CMOS scaling and issues in sub-0. 25 m systems, in Design of High-Performance Microprocessor Circuits, A. Chandrakasan W. J. Bowhill, and F. Fox, Eds. Piscataway, NJ: IEEE, 2001, ch. 2, p.27–45.
Google Scholar