[1]
Liu Guangzhong, XuXiao, Research and Analysis on the Reconfigurable System, Proceedings of the International Multi Conference of Engineers and Computer Scientists 2008, Vol I, IMECS 2008, 19-21 March, 2008, Hong Kong.
Google Scholar
[2]
Lech J O zwiak, Nadia Nedjah, Miguel Figueroa, Modern development methods and tools for embedded reconfigurable systems: A survey , INTEGRATION, the VLSI journal 43 (2010) 1–33.
DOI: 10.1016/j.vlsi.2009.06.002
Google Scholar
[3]
Paul D. Reynolds, Russell W. Duren, Matthew L. Trumbo, Robert J. Marks , Fpga implementation of particle swarm optimization for inversion of large neural networks.
DOI: 10.1109/sis.2005.1501648
Google Scholar
[4]
W. Fox, R. Marks II, M. Hazen, C. Eggen, and M. El- Sharkawi, Environmentally Adaptive Sonar Control in a Tactical Setting., in Impact of Environmental Variability on Acoustic Predictions and Sonar Performance, pp.595-602, Sept. (2002).
DOI: 10.1007/978-94-010-0626-2_74
Google Scholar
[5]
M. Hazen, R. Marks II, W. Fox, M. El-Sharkawi, and C. Eggen, Sonar Sensitivity Analysis Using a Neural Network Acoustic Model Emulator, " Oceans , 02 MTS/IEEE, vol. 3, pp.1430-1433, Oct. (2002).
DOI: 10.1109/oceans.2002.1191847
Google Scholar
[6]
C. Jensen, R. Reed, R. Marks II, M. El-Sharkawi, Jae-Byung Jung, R. Miyamoto, G. Anderson, and C. Eggen, Inversion of Feed forward Neural Networks: Algorithms and Applications, Proceedings of the IEEE, vol. 87, pp.1536-1549, Sept. (1999).
DOI: 10.1109/5.784232
Google Scholar
[7]
B. Thompson, R. Marks II, M. El-Sharkawi, W. Fox, and R. Miyamoto, Inversion of Neural Network Underwater Acoustic Model for Estimation of Bottom Parameters Using Modified Particle Swarm Optimizers, 2003 International Joint Conference on Neural Networks, pp.1301-1306, July (2003).
DOI: 10.1109/ijcnn.2003.1223883
Google Scholar
[8]
R. Eberhart, and Y. Shi, A Modified Particle Swarm Optimizer, Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, pp.69-73, May (1998).
DOI: 10.1109/icec.1998.699146
Google Scholar
[9]
Swarm Intelligence for Digital Circuits Implementation on Field Programmable Gate Arrays Platforms Ganesh K. Venayagamoorthy and Venu G. Gudise.
DOI: 10.1109/eh.2004.1310813
Google Scholar
[10]
Discrete cooperative particle swarm optimization for FPGA placement, Mohammed El-Abd , Hassan Hassan , Mohab Anis, Mohamed S. Kamel, Mohamed Elmasry , Journal of Applied soft computing.
DOI: 10.1016/j.asoc.2009.07.011
Google Scholar
[2010]
284-295.
Google Scholar
[11]
V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer Academic Publishers, Norwell, MA, (1999).
DOI: 10.1007/978-1-4615-5145-4
Google Scholar
[12]
12. Ant Colony Algorithm for Evolutionary Design of Arithmetic Circuits, Mostafa Abd-El-Barr, Sadiq M. Sait, and Bambang A.B. Sarif, ICM 2003, Cairo, Egypt.
DOI: 10.1109/cec.2003.1299645
Google Scholar
[13]
Hugo de Garis. Evolvablc Hardware: Gcnctic Programming of a Darwin Machine. Prueeedings of the Intemational Conference in Innsbruck Ausnia, pagcs 441-449, Springcr-Verlag, (1993).
Google Scholar
[14]
Sushi1 J. Louis. Genetic Algorithms as a Computational Tool & Design . PhD thesis, Department of Computer Scicncc, Indiana University. Aug (1993).
Google Scholar
[15]
R. S. Zebulum and M. A. Pachcco and Maria Vcllasco. Evolutionary Electronics: Automatic Design of Electronic Circuits and Svstems by Generic Algorithms. CRC Press, (2002).
Google Scholar
[16]
Adrian Thompson. Silicon Evolution. Proceedings 01 the First Annual Conferece on Genetic Programming, pages 444-452. MIT Press, (1996).
Google Scholar
[17]
17.J. F. Millcr, T. Fogarty, and P Thomson. Designing Electronic Circuits Using Evolutionary Algorithms. Arithmctic Circuits: A Case Study. Genetic-Algorithms and Evolution Strategy in Engineering and Computer Science, John Wilq and Sons, Chichester, page& 105-131, (1998).
Google Scholar
[18]
Techniques for power reduction in an SIMD implementation of the VQ/SOM algorithms D.C. Hendry, R. Cambio School of Engg, University of Aberdeen, Aberdeen, Scotland.
DOI: 10.1016/j.neucom.2010.03.005
Google Scholar
[19]
Ant Colony Optimization and its Application to Boolean Satisfiability for Digital VLSI Circuits, Rajamani Sethuram Manish Parashar., Electrical and Computer Engineering Dept., Rutgers University, Piscataway, NJ 08854, USA, (2006).
DOI: 10.1109/adcom.2006.4289945
Google Scholar
[20]
G. Theraulaz and E. Bonabeau. A Brief History of Stigmergy, ArtificialLife, 5(2): 97_116, Nov. (1999).
Google Scholar
[21]
Reliability enhancement of digital combinational circuits based on evolutionary approachS.J. Seyyed Mahdavi, K. Mohammadi, Microelectronics Reliability 50 (2010) 415–423.
DOI: 10.1016/j.microrel.2009.11.016
Google Scholar
[22]
Yao X, Higuchi T. Promises and challenges of evolvable hardware. IEEE Trans Syst Man Cybernet Part C 1999; 29(February): 87–97.
DOI: 10.1109/5326.740672
Google Scholar
[23]
Thompson A. Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Distinguished dissertation series. Springer-Verlag; (1998).
Google Scholar
[24]
Keymeulen D, Stoica A, Zebulum RS. Fault-tolerant evolvable hardware using field programmable transistor arrays. IEEE Trans Reliab 2000; 49(3): 305–16 [special issue on fault-tolerant VLSI systems, IEEE Press].
DOI: 10.1109/24.914547
Google Scholar
[25]
Murakawa M, Yoshizawa S, Kajitani I, Furuya T, Iwata M, Higuchi T. Hardware, evolution at functional level. In: Proceedings of the international conference on evolutionary computation: the 4th conference on parallel problem solving from nature, Nayoya, Japan; 1996. p.62.
DOI: 10.1007/3-540-61723-x_970
Google Scholar
[26]
Miller JF. Digital filter design at gate-level using evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference, (GECCO'99), Florida, USA, 1999, Morgan Kaufmann; 1999. p.1127–34.
Google Scholar
[27]
Vassilev VK, Job D, Miller JF. Towards the automatic design of more efficient digital circuits. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware (EH'02), Palo Alto, California, July 2000, IEEE Computer Society Press; 2000. p.151.
DOI: 10.1109/eh.2000.869353
Google Scholar
[28]
Miller JF, Job D, Vassilev VK. Principles in the evolutionary design of digital circuits, J Genet Prog Evol Mach 2000; 1(1): 8–35 [Kluwer Academic Publishers].
Google Scholar
[29]
Pecenka T, Kotasek Z, Sekanina L, Strnadel J. Automatic discovery of RTL benchmark circuits with predefined testability properties. In: Proceedings of the 2005 NASA/DoD conference of evolution hardware, (EH'05) IEEE.
DOI: 10.1109/eh.2005.10
Google Scholar
[30]
Shanthi AP. Ranjani Parthasarathi, Practical and scalable evolution of digital circuits. Appl Soft Comput 2009; 9(2): 618–24.
DOI: 10.1016/j.asoc.2008.08.004
Google Scholar
[31]
Towards automated evolutionary design of combinational circuits, Carlos A. Coello Coelloa, Alan D. Christiansenb, Arturo Herna ndez Aguirreba Laboratorio Nacional de InformaÂtica Avanzada, A.C. Xalapa, Veracruz 91090, Mexicob Department of Computer Science, Tulane University, New Orleans, LA 70118.
Google Scholar
[32]
High level optimization pipeline design, Jennifer P. L. Campbell, Nancy A. Day, School of Comp. Sci., University of Waterloo, Waterloo, ON, Canada.
Google Scholar
[33]
FPGA Speedup for Financial Network Models by Joe Kelley, June (2010).
Google Scholar
[34]
FPGA Acceleration in HPC: A Case Study in Financial Analytics, Xtreme data , Inc.
Google Scholar
[35]
Nathan A. Woods, Tom VanCourt, Fpga acceleration of quasi-monte carlo in finance.
Google Scholar
[36]
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, (2004).
Google Scholar
[37]
D. Thomas and W. Luk, FPGA-optimised high-quality random number generators, Proc. ACM/SIGDA 18th Int. Symp. Field- Programmable Gate Arrays, pp.235-244, Feb. (2008).
DOI: 10.1145/1344671.1344706
Google Scholar