Laser Reflow Technology on High-Q Toroidal Microcavity

Article Preview

Abstract:

Optical microcavities confine light to small model volumes and have ultrahigh quality factor (Q), especially microtoroid cavities, having very broad application prospects. In this paper, we use MEMS (Microelectromechanical System) skills, such as lithography, dry etching to fabricated silica optical microdisks. And after that, a novel processing method based on CO2 laser reflow technology is introduced to create microtoroid cavities. The processing details are discussed including light path, laser power and other important parameters. The quality factor of the planar microtoroid cavity was measured by taper-fiber coupling and the average value reach 4.8×105.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4338-4343

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. J. Vahala, Optical microcavities, Nature. vol. 14, pp.839-846, (2003).

Google Scholar

[2] P. Rijiravanich, K. Aoki, J. Chen, W. Surareungchai and M Somasundrum, "Micro-cylinder biosensors for phenol and catechol. vol. 589, pp.249-258, (2006).

DOI: 10.1016/j.jelechem.2006.02.019

Google Scholar

[3] T. J. Kippenberg, S. M Spillane, D. K. Armani and K. J. Vahala, Fabrication and coupling to planar high-Q silica disk microcavities., APPLIED PHYSICS LETTERS. vol. 28, pp.797-799, (2003).

DOI: 10.1063/1.1593833

Google Scholar

[4] T. J. Kippenberg and K. J. Vahala, Demonstration of High-Q Microdisk Resonators: Fabrication and Nonlinear Properties., Lasers and Electro-Optics. vol. 6, pp.1-2, (2007).

DOI: 10.1109/cleo.2007.4452386

Google Scholar

[5] S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Ultralow-threshold Raman laser using a spherical dielectricmicrocavity., Nature. vol. 415, pp.621-623, (2002).

DOI: 10.1038/415621a

Google Scholar

[6] A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala,. Ultralow-threshold erbium-implanted toroidal micro laser on silicon., APPLIED PHYSICS LETTERS, vol. 7, pp.1037-1039, (2004).

DOI: 10.1063/1.1646748

Google Scholar

[7] T. Carmon and K. J. Vahala, Visible continuous emission from a silica microphotonic device by third-harmonic generation., Nature., vol. 3, pp.430-435, (2007).

DOI: 10.1038/nphys601

Google Scholar

[8] S. M. Spillane, T. J Kippenberg and K. J. Vahala, Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics., PHYSICAL REVIEW. vol. A 71, pp. (013817)1-10, (2005).

DOI: 10.1103/physreva.71.013817

Google Scholar

[9] Takao Aoki, Barak Dayan, E, Wilcut, W, P. Bowen, A. S. Parkins T. J. Kippenberg, K. J. Vahala and H. J Kimble. Observation of strong coupling between one atom and a monolithic microresonator., Nature. vol. 443, pp.671-674, (2006).

DOI: 10.1038/nature05147

Google Scholar

[10] A. M. Armani and K. J. Vahala, Heavy water detection using ultra-high-Q microcavities., OPTICSLETTERS. Vol. 12, pp.1896-1898, (2006).

DOI: 10.1364/ol.31.001896

Google Scholar

[11] J. C. Knight, C. G heung, F. Jacques and T. A. Birks, Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper., OPTICSLETTERS. vol. 22, pp.1129-1131, (1997).

DOI: 10.1364/ol.22.001129

Google Scholar

[12] A. D. McLachlan and F. P. Meyer, Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths., Applied Optics. vol. 9, p.1728–1731, (1987).

DOI: 10.1364/ao.26.001728

Google Scholar

[13] S. M. heik-Bahae and H. S. Kwok, Controlled CO2 laser melting of silicon. , Applied Physics. vol. 2, pp.518-524, (1988).

Google Scholar

[14] E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal and D. R. Hall Highly localized CO2 laser cleaning and damage repair of silica optical surfaces., Applied Optics. vol. 45, p.5358–5367 , (2006).

DOI: 10.1364/ao.45.005358

Google Scholar

[15] D. K Arman, T. J. Kippenberg, S. M. Spillane and K. J Vahala. Ultra-high-Q toroid microcavity on a chip, Nature. Vol. 421, pp.925-928, (2002).

DOI: 10.1038/nature01371

Google Scholar