[1]
A.P. Tiwari, B. Bandyopadhyay, and G. Govindarajan, Spatial control of a large pressurized heavy water reactor, IEEE Transactions on Nuclear Science, vol. 43, no. 4, pp.2440-2453, (1996).
DOI: 10.1109/23.531794
Google Scholar
[2]
Cheng Liu, Jin-Feng Peng, Fu-Yu Zhao and Chong Li, Design and optimization of fuzzy-PID controller for the nuclear reactor power control, Nuclear Engineering and Design, vol. 239, no. 11, pp.2311-2316, November (2009).
DOI: 10.1016/j.nucengdes.2009.07.001
Google Scholar
[3]
Suman Saha, Saptarshi Das, Ratna Ghosh, Bhaswati Goswami, R. Balasubramanian, A.K. Chandra, Shantanu Das and Amitava Gupta, Design of a fractional order phase shaper for iso-damped control of a PHWR under step-back condition, IEEE Transactions on Nuclear Science, vol. 57, no. 3, pp.1602-1612, (2010).
DOI: 10.1109/tns.2010.2047405
Google Scholar
[4]
Michael H. R. Williams, Random Processes in nuclear reactors, IEEE Transactions on Nuclear Science, vol. 22, no. 5, October 1975, pp.2121-2122.
DOI: 10.1109/tns.1975.4328076
Google Scholar
[5]
V.G. McGevna, On-line analysis of reactor noise using time series analysis, IEEE Transactions on Nuclear Science, vol. 29, no. 1, pp.684-687, (1982).
DOI: 10.1109/tns.1982.4335937
Google Scholar
[6]
Christophe Demaziere and Imre Pazsit, Numerical tools applied to power reactor noise analysis, Progress in Nuclear Energy, vol. 51, no. 1, pp.67-81, January (2009).
DOI: 10.1016/j.pnucene.2008.01.010
Google Scholar
[7]
K. Behringer and J. Pineyro, Application of the Wiener-Hermite functional method to a linear feedback model of point reactor kinetics driven by random reactivity noise, Annals of Nuclear Energy, vol. 24, no. 8, pp.587-623, May (1997).
DOI: 10.1016/s0306-4549(96)00043-6
Google Scholar
[8]
Antonio. C. A. Mol, Jose C. S. Almeida, Claudio M.N.A. Pereira, Eugenio R. Marins, Celso Marcelo F. Lapa, Neural and genetic-based approaches to nuclear transient identification including 'don't know' response, Progress in Nuclear Energy, vol. 48, no. 3, pp.268-282, April (2006).
DOI: 10.1016/j.pnucene.2005.07.002
Google Scholar
[9]
Robert E. Uhrig, Lefteri H. Tsoukalas, Soft computing technologies in nuclear engineering applications, Progress in Nuclear Energy, vol. 34, no. 1, pp.13-75, (1999).
DOI: 10.1016/s0149-1970(97)00109-1
Google Scholar
[10]
T. V. Santosh, G. Vinod, R. K. Saraf, A. K. Ghosh, H. S. Kushwaha, Application of artificial neural networks to nuclear power plant transient diagnosis, Reliability Engineering & System Safety, vol. 92, no. 10, pp.1468-1472, October (2007).
DOI: 10.1016/j.ress.2006.10.009
Google Scholar
[11]
Ramazan Coban, Computational intelligence-based trajectory scheduling for control of nuclear research reactors, Progress in Nuclear Energy, vol. 52, no. 4, pp.415-424, May (2010).
DOI: 10.1016/j.pnucene.2009.09.004
Google Scholar
[12]
F. Cadini, E. Zio, N. Pedroni, Simulating the dynamics of the neutron flux in a nuclear reactor by locally recurrent neural networks, Annals of Nuclear Energy, vol. 34, no. 6, pp.483-495, June (2007).
DOI: 10.1016/j.anucene.2007.02.013
Google Scholar
[13]
Enrico Zio, Matteo Broggi and Nicola Pedroni, Nuclear reactor dynamics on-line estimation by Locally Recurrent Neural Networks, Progress in Nuclear Energy, vol. 51, no. 3, pp.573-581, April (2009).
DOI: 10.1016/j.pnucene.2008.11.006
Google Scholar
[14]
Mehrdad Boroushaki, Mohammad B. Ghofrani and Caro Lucas, Identification of a nuclear reactor core (VVER) using recurrent neural networks, Annals of Nuclear Energy, vol. 29, no. 10, pp.1225-1240, July (2002).
DOI: 10.1016/s0306-4549(01)00105-0
Google Scholar
[15]
Afshin Hedayat, Hadi Davilu, Ahmad Abdollahzadeh Barfrosh and Kamran Sepanloo, Estimation of research reactor core parameters using cascade feed forward artificial neural networks, Progress in Nuclear Energy, vol. 51, no. 6-7, pp.709-718, August-September (2009).
DOI: 10.1016/j.pnucene.2009.03.004
Google Scholar
[16]
Hakim Mazrou, M. Hamadouche, Application of artificial network for safety core parameters prediction in LWRRS, Progress in Nuclear Energy, vol. 44, no. 3, pp.263-275, (2004).
DOI: 10.1016/s0149-1970(04)90014-5
Google Scholar
[17]
Myung-Sub Roh, Se-Woo Cheon and Soon-Heung Chang, Thermal power prediction of nuclear power plant using neural network and parity space model, IEEE Transactions on Nuclear Science, vol. 38, no. 2, pp.866-872, (1991).
DOI: 10.1109/23.289402
Google Scholar
[18]
Enrico Zio, A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes, IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp.1460-1478, (2006).
DOI: 10.1109/tns.2006.871662
Google Scholar
[19]
Michael G. Lysenko, Hing-Ip Wong, G. Ivan Maldonado, Predicting neutron diffusion eigen values with a query-based adaptive neural architecture, IEEE Transactions on Nuclear Science, vol. 10, no. 4, pp.790-800, (1999).
DOI: 10.1109/72.774221
Google Scholar
[20]
W.J. Kim, S.H. Chang, B. H. Lee, Application of neural networks to signal prediction in nuclear power plant, IEEE Transactions on Nuclear Science, vol. 40, no. 5, pp.1337-1341, (1993).
DOI: 10.1109/23.234547
Google Scholar
[21]
Alain Oustaloup, Francois Levron, Benoit Mathieu and Florence M. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp.25-39, January (2000).
DOI: 10.1109/81.817385
Google Scholar
[22]
Benoit B. Mandelbrot and John W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM review, vol. 10, no. 4, pp.422-437, October (1968).
DOI: 10.1137/1010093
Google Scholar
[23]
N. Jerermy Kasdin, Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation, Proceedings of the IEEE, vol. 83, no. 5, pp.802-827, (1995).
DOI: 10.1109/5.381848
Google Scholar
[24]
J Makhoul, Linear prediction: A tutorial review, Proceedings of the IEEE, vol. 63, no. 4, April (1975).
Google Scholar