A Theoretical Calculation of Misfit Dislocation and Strain Relaxation in Step-graded InxGa 1-x N/GaN Layers

Article Preview

Abstract:

This paper presents a theoretical calculation of misfit dislocation and strain relaxation in compositionally step graded InxGa 1-x N grown on GaN using the total dislocation energy at each interface. The results also compared with uniform layer of In 0.17 Ga 0.83 N and In 0.14 Ga 0.86 N grown differently on GaN. Due to having residual strain and a step increase in indium composition a lower misfit strain in upper layers and hence larger critical thickness at each interface has been reported. These effects significantly reduced the misfit dislocations from 2.6×105 cm-1 to 9.5×104 cm-1 in step graded In 0.14 Ga 0.86 N(500nm)/In 0.09 Ga 0.91 N(100nm)/In 0.05 Ga 0.95 N(100nm)/GaN layers instead of a uniform In 0.14 Ga 0.86 N(700nm)/GaN. A small residual strain of 0.0007 after 700 nm graded layer thickness has been reported with 87.04% strain relaxation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

456-460

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. W. Matthews and A. E. Blakeslee, Journal of Crystal Growth 27, (1974) 118-125.

Google Scholar

[2] Takashi Hanada, Taka-aki Shimada, Shi-Yang Ji, Kenji Hobo, Yuhuai Liu, and Takashi Matsuoka Phys. Status Solidi C 8, No. 2, 444–446 (2011).

DOI: 10.1002/pssc.201000565

Google Scholar

[3] M Haeberlen, D Zhu, C McAleese, MJ Kappers and CJ Humphreys Journal of Physics: Conference Series 209 (2010) 012017.

Google Scholar

[4] B. Bertoli, D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J. P. Correa, P. B. Rago, E. N. Suarez, F. C. Jain, and J. E. Ayers Journal of Applied Physics 108, 113525 (2010).

DOI: 10.1063/1.3514565

Google Scholar

[5] D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J. Reed, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers Journal of Electronic Materials, Vol. 39, No. 8, (2010).

DOI: 10.1007/s11664-010-1165-9

Google Scholar

[6] S.K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck Phys. Stat. sol. (a) 179, 125 (2000).

DOI: 10.1002/1521-396x(200005)179:1<125::aid-pssa125>3.0.co;2-2

Google Scholar

[7] P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues Appl. Phys. Lett. 66, 3642 (1995).

Google Scholar

[8] V. Krishnamoorthy, Y. W. Lin, and R. M. Park, Journal of Applied Physics, 725(5), 1752, (1992).

Google Scholar

[9] G. Macpherson, R. Beanland, and J. P. Goodhew, Philosophical Magazine A, 1996, Vol. 73, No 05, 1439-1450.

Google Scholar

[10] S. Srinivasan, L. Geng, R. Liu, and F. A. Ponce, Y. Narukawa and S. Tanaka Applied Physics Letters, 83, 5187 ( 2003).

Google Scholar

[11] Erin C. Young, Feng Wu, Alexey E. Romanov, Anurag Tyagi, Chad S. Gallinat, Steven P. DenBaars, Shuji Nakamura, and James S. Speck Applied Physics Express 3 (2010) 011004.

DOI: 10.1143/apex.3.011004

Google Scholar

[12] D. Holec, P.M.F.J. Costa, M.J. Kappers, C.J. Humphreys Journal of Crystal Growth 303 (2007) 314–317.

DOI: 10.1016/j.jcrysgro.2006.12.054

Google Scholar