Pareto Optimal Robust Design of Fuzzy Fractional-Order Pid Controllers

Article Preview

Abstract:

In this paper, a multi-objective uniform-diversity genetic algorithm (MUGA) is used for Pareto optimum design of fuzzy fractional-order PID controllers for plants with parametric uncertainties. Two conflicting objective functions have been used in Pareto design of the fuzzy fractional-order PID controller. The results clearly show that an effective trade-off can be compromisingly achieved among the different fuzzy fractional-order PID controllers obtained using the methodology of this work and to achieve a robust design against the plant’s uncertainties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4735-4742

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Concepcio´n Monje, M. Blas, F. Vicente, C. YangQuan, Tuning and auto-tuning of fractional order controllers for industry applications, Control Engineering Practice, vol. 16, 2008, p.798–812, doi: 10. 1016/j. conengprac. 2007. 08. 006.

DOI: 10.1016/j.conengprac.2007.08.006

Google Scholar

[2] V. Feliu-Batlle , R. Rivas-Perezb, F.J. Castillo-Garcia, Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool, Computers and Electronics in Agriculture , vol. 69 , 2009, p.185.

DOI: 10.1016/j.compag.2009.08.005

Google Scholar

[3] S. Ramiro, J.A. Barbosa, M. Tenreiro, M. Alexandra, Performance of Fractional PID Algorithms Controlling Nonlinear Systems with Saturation and Backlash Phenomena, Journal of Vibration and Control, vol. 13, 2007, p.1407.

DOI: 10.1177/1077546307077499

Google Scholar

[4] Y. Chen, I. Petras, D. Xue, Fractional Order Control - A Tutorial, Proc. American Control Conference (ACC'09), Hyatt Regency Riverfront, St. Louis, MO, USA, June 2009, pp.1397-1411.

DOI: 10.1109/acc.2009.5160719

Google Scholar

[5] Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, (1999).

Google Scholar

[6] M. K. Bouafoura, N. B. Braiek, PIlDµ controller design for integer and fractional plants using piecewise orthogonal functions, Communication in Nonlinear Science and Numerical Simulation, vol. 15, 2010, pp.1267-1278.

DOI: 10.1016/j.cnsns.2009.05.047

Google Scholar

[7] D. Xue, Y. Chen, Solving Applied Mathematical Problems with MATLAB®, CRC Press, Taylor & Francis Group, (2009).

Google Scholar

[8] A. Biswas, S. Das, A. Abraham, S. Dasgupta, Design of fractional PID controllers with an improved differential evolution, Engineering Application of Artificial Intelligence, vol. 22, 2009, p.343–350, doi: 10. 1016/j. engappai. 2008. 06. 003.

DOI: 10.1016/j.engappai.2008.06.003

Google Scholar

[9] Y.J. Park, H.S. Cho, D.H. Cha, Genetic Algorithm-Based Optimization of Fuzzy Logic Controller Using Characteristic Parameters, Proc. IEEE International Conference on Evolutionary Computation, Nov., IEEE Press, 1995, pp.831-836.

DOI: 10.1109/icec.1995.487494

Google Scholar

[10] A. Hajiloo, N. Nariman-zadeh, A. Moeini, Pareto Optimum Design of Robust Controllers for Systems with Parametric Uncertainties, Robotics, Automation and Control, 2008, pp.205-226, I-Tech, Vienna, Austria.

DOI: 10.5772/5846

Google Scholar