[1]
Burr I.W. Cumulative frequency functions, Ann. Math. Statist. Vol. 13(1942), pp.215-232.
DOI: 10.1214/aoms/1177731607
Google Scholar
[2]
Sartawi H.A., Abu-Salih M.S. Bayesian prediction bounds for the Burr type X model, Commun. Statist. Theory Methods, Vol. 20, No. 7(1991), pp.2307-2330.
DOI: 10.1080/03610929108830633
Google Scholar
[3]
Jaheen Z.F. Bayesian approach to prediction with outliers from the Burr type model. Microelectron. Reliab. Vol. 35, No. 1(1995), pp.45-47.
DOI: 10.1016/0026-2714(94)00056-t
Google Scholar
[4]
Jaheen Z.F. Empirical Bayes estimation of the reliability and failure rate functions of the Burr type X failure rate model. J. Appl. Statist. Sci. Vol. 3, No. 4(1996), pp.281-288.
Google Scholar
[5]
Ahmad, K.E., Fakhry, M.E. and Jaheen, Z.F. Empirical Bayes estimation of P(Y<X) and characterizations of Burr-type X model, Journal of Statistical Planning and Inference, Vol. 64(1997), pp.297-308.
DOI: 10.1016/s0378-3758(97)00038-4
Google Scholar
[6]
Raqab M.I. and Kundu,D. Comparison of different estimators of P(Y<X) for a scaled Burr type X distribution, Communications in Statistics-Simulation and Computation, Vol. 34(2005), pp.465-483.
DOI: 10.1081/sac-200055741
Google Scholar
[7]
Kim,C. and Chung,Y. Bayesian estimation of P(Y<X) from Burr-type X model containing spurious observations, Statistical Papers, Vol. 47(2006), pp.643-651.
DOI: 10.1007/s00362-006-0310-2
Google Scholar
[8]
Varian H.R. A Bayesian approach to real estimate assessment. In Feinberge, S. &Zellner, A. (Eds. ). Studies in Bayesian Econometrics and statistics in Honor of L.J. Savage, Amsterdam, North Holland, (1975), pp.195-208.
Google Scholar
[9]
Zellner,A. Bayesian estimation and prediction using asymmetric loss function. Journal of American statistical Association, Vol. 81(1986), pp.446-451.
DOI: 10.1080/01621459.1986.10478289
Google Scholar
[10]
Basu A.P., Ebrahimi,N. Bayesian approach to life testing and reliability estimation using asymmetric loss function, Journal of statistical Planning and Inferences, Vol. 29(1991), pp.21-31.
DOI: 10.1016/0378-3758(92)90118-c
Google Scholar
[11]
Parkash,G. and Singh D.C. Shrinkage testimators for the inverse dispershon of the inverse Gaussian distribution under the LINEX loss function. Australian Journal of statistics, Vol. 35, No. 4(2006), pp.363-470.
DOI: 10.17713/ajs.v35i4.356
Google Scholar
[12]
Singh D.C., Prakash,G. and Singh,P. Shrinkage testimators for the shape parameters of pareto distribution using the LINEX loss function. Comm. Statistist. Theory and Methods, Vol. 36, No. 4(2007) pp.741-753.
DOI: 10.1080/03610920601033694
Google Scholar
[13]
Ahmad A.A., Mohammad Z.R. and Mohamed T.M. Bayesian predic- tion intervals for the future order statistics from the generalized exponential distribution, JIRSS, vol. 6, No. 1(2007), pp.17-30, (2007).
Google Scholar
[14]
Prakash,G. and Singh D.C.: Shrinkage estimation in exponential Type-II censored under LINEX loss function. Journal of the Korean Statistical Society, vol. 37, No. 1(2008), pp.53-61.
DOI: 10.1016/j.jkss.2007.07.002
Google Scholar