Modeling of the Strain Rate Dependent Material Behavior of 3D-Textile Composites with Production and Operational Defects

Article Preview

Abstract:

This paper concerned with modeling of the strain rate dependent material behavior of 3D-textile composites with simultaneous consideration of production and operational (e.g. pores or fatigue damage) defects. Therefore an additive model in the sense of continuum damage mechanics was introduced. For the model validation extensive experimental tests on glass non-crimp fabrics reinforced epoxy (GF-NCF/EP) composites are performed. The focus is put on the influence of production and fatigue related pre-damage under subsequent highly-dynamic tensile loading. The theoretical studies shows a good coincidence with the experimentally results

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

651-655

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Hufenbach, M. Gude, Ch. Ebert: Hybrid 3D-textile reinforced composites with tailored property profiles for crash and impact applications, Composites Science and Technology 69 (2009) pp.1422-1426.

DOI: 10.1016/j.compscitech.2008.09.033

Google Scholar

[2] A. Puck: Festigkeitsanalyse von Faser-Matrix-Laminaten, Modelle für die Praxis, Carl Hanser-Verlag, München (1996).

DOI: 10.1002/maco.19970480709

Google Scholar

[3] R. Cuntze, et al.: Neue Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbund unter mehrachsiger Beanspruchung-Modellbildung und Experimente, Fortschritt-Berichte, Reihe 5, Nr. 506, VDI-Verlag, Düsseldorf (1997).

Google Scholar

[4] B. Song, W. Chen, T. Weerasooriya: Quasi-Static and Dynamic Compressive Behaviors of a S-2 Glass/SC15 Composite, Journal of Composite Materials 37 (2003) pp.1723-1743.

DOI: 10.1177/002199803035189

Google Scholar

[5] R.P.L. Nijssen: Fatigue Life Prediction and Strength Degradation of Wind Turbine Rotor Blade Composites, Dissertation, Faculty of Aerospace Engineering, Delft University, (2007).

Google Scholar

[6] M. Gude, W. Hufenbach, I. Koch: Damage evolution of novel 3D textile reinforced composites under fatigue loading conditions, Composites Science and Technology, 70 (2010) pp.186-192.

DOI: 10.1016/j.compscitech.2009.10.010

Google Scholar

[7] W. Van Paegegem, J. Degrieck: Modelling damage and permanent strain in fibre-reinforced composites under in-plane fatigue loading, Composites Science and Technology, 63 (2003) 5, 677-694.

DOI: 10.1016/s0266-3538(02)00257-9

Google Scholar

[8] W. Hufenbach, M. Gude, R. Protz: Effects of impact and fatigue induced defects on the damage behaviour of composites under subsequent high-speed loading, 11th Deformation & Fracture of Composites, Cambridge, (2011).

Google Scholar

[9] L. Liu, Z.S. Guo, B.M. Zhang: Experimental investigation of porosity and its effect on interlaminar shear strength in composite laminates, SAMPE 2006-Long Beach, April 30-May 4, (2006).

Google Scholar

[10] M.L. Costa, S.F.M. Almeida, M.C. Rezende: The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates, Composites Science and Technology 61 (2001) 2101–2108.

DOI: 10.1016/s0266-3538(01)00157-9

Google Scholar

[11] U. Sánchez-Santana, C. Rubio-González, G. Mesmacque, A. Amrouche, X. Decoopman: Effect of fatigue damage induced by cyclic plasticity on the dynamic tensile behaviour of materials, International Journal of Fatigue 30, 2008, pp.1708-1719.

DOI: 10.1016/j.ijfatigue.2008.03.011

Google Scholar

[12] E.K. Gamstedt, S.I. Andersen: Fatigue Degradation and Failure of Rotating Composite Structures – Materials Characterisation and Underlying Mechanisms, Riso National Laboratory Denmark, 2001, pp.1-55.

Google Scholar

[13] M. Mahinfalah, R.A. Skordahl: The effects of hail damage on the fatigue strength of a graphite/epoxy composite laminate, Composite Structures 42, 1998, pp.101-106.

DOI: 10.1016/s0263-8223(98)00056-7

Google Scholar

[14] B. Freeman, E. Schwingler , M. Mahinfalah, K. Kellogg: The effect of low-velocity impact on the fatigue life of Sandwich composites, Composite Structures 70, 2005, p.374–381.

DOI: 10.1016/j.compstruct.2004.09.027

Google Scholar