[1]
J. Aczel and J. Dhombres, Functional Equation in Several Variables, Cambridge Univ. Press, (1989).
Google Scholar
[2]
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math . Soc. Japan, 2 (1950), 64-66.
Google Scholar
[3]
T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003), 687-705.
Google Scholar
[4]
V. Balopoulos, A. G. Hatzimichailidis and Basil K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci. 177 (2007), 2336-2348.
DOI: 10.1016/j.ins.2007.01.005
Google Scholar
[5]
R. Biswas, Fuzzy inner product space and fuzzy norm functions, Inform. Sci. 53 (1991), 185-190.
DOI: 10.1016/0020-0255(91)90063-z
Google Scholar
[6]
S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcuta Math. Soc. 86 (1994), 429-436.
Google Scholar
[7]
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
DOI: 10.1007/bf02192660
Google Scholar
[8]
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
DOI: 10.1007/bf02941618
Google Scholar
[9]
C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992), 239-248.
DOI: 10.1016/0165-0114(92)90338-5
Google Scholar
[10]
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
DOI: 10.1006/jmaa.1994.1211
Google Scholar
[11]
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
DOI: 10.1073/pnas.27.4.222
Google Scholar
[12]
A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143-154.
DOI: 10.1016/0165-0114(84)90034-4
Google Scholar
[13]
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica11 (1975), 326-334.
Google Scholar
[14]
S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst. 63 (1994), 207-217.
DOI: 10.1016/0165-0114(94)90351-4
Google Scholar
[15]
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159 (2008), 720-729.
DOI: 10.1016/j.fss.2007.09.016
Google Scholar
[16]
A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results Math. doi: 10. 1007/s00025-007-0278-9.
Google Scholar
[17]
Th. M. Rassias, On the stability of the linear mapping in Banacb spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
DOI: 10.1090/s0002-9939-1978-0507327-1
Google Scholar
[18]
K. Ravi, P. Narasimman and R. Kishore Kumar, Generalized Hyers-Ulam- Rassias stability and J. M. Rassias stability of a quadratic functional equation, IJMSEA, 3(2)(2009), 79-94.
DOI: 10.9734/bjmcs/2016/21874
Google Scholar
[19]
R. Saadati, J. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006) 331–344.
DOI: 10.1016/j.chaos.2005.03.019
Google Scholar
[20]
Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178(2008), 1961-(1967).
DOI: 10.1016/j.ins.2007.12.006
Google Scholar
[21]
F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis Milano 53 (1983), 113-129.
Google Scholar
[22]
S. M. Ulam, A Colloection of the Mathematical Problems, Interscience Publ., NewYork, (1960).
Google Scholar
[23]
Cpmgxin Wu and Jinxuan Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Technol. 1 (1984), 1-7.
Google Scholar