Multiresolution LBP Correlogram for Texture Image Indexing and Retrieval

Article Preview

Abstract:

A new image indexing and retrieval algorithm known as local binary pattern (LBP) correlogram is presented in this paper. LBP histogram captures only the patterns distribution in a texture while the spatial correlation between the pair of patterns is gathered by LBP correlogram. Multi-resolution texture decomposition and color correlation has been efficiently used in the proposed method where multi-resolution texture images are computed using Gaussian filter for collection of LBPs from these particular textures. Eventually, feature vectors are constructed by making into play the auto-correlation that exists between binary patterns. The retrieval results of the proposed method are examined on different texture image databases viz Brodatz database (DB1), MIT VisTex database (DB2), rotated Brodatz database (DB3) and small set of rotated Brodatz database (DB4), and shows a major improvement in terms of average retrieval rate as when weighed against with LBP histogram and some existing transform domain technique.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

908-914

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ahmadian, A. Mostafa, An Efficient Texture Classification Algorithm using Gabor wavelet, 25th Annual international conf. of the IEEE EMBS, pages 930-933, Cancun, Mexico.

DOI: 10.1109/iembs.2003.1279918

Google Scholar

[2] N. Do and M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-leibler distance, IEEE Tans. Image Proc., 11(2): 146-158, (2002).

DOI: 10.1109/83.982822

Google Scholar

[3] Unser, Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell., 15 (11): 1186-1191, (1993).

DOI: 10.1109/34.244679

Google Scholar

[4] S. Manjunath and W. Y. Ma, Texture Features for Browsing and Retrieval of Image Data, IEEE Trans. Pattern Anal. Mach. Intell., 18 (8): 837-842, (1996).

DOI: 10.1109/34.531803

Google Scholar

[5] Kokare, P. K. Biswas, B. N. Chatterji, Texture image retrieval using rotated Wavelet Filters, Elsevier J. Pattern recognition letters, 28:. 1240-1249, (2007).

DOI: 10.1016/j.patrec.2007.02.006

Google Scholar

[6] M. Kokare, P. K. Biswas, B. N. Chatterji, Texture Image Retrieval Using New Rotated Complex Wavelet Filters, IEEE Trans. Systems, Man, and Cybernetics, 33 (6): 1168-1178, (2005).

DOI: 10.1109/tsmcb.2005.850176

Google Scholar

[7] M. Kokare, P. K. Biswas, B. N. Chatterji, Rotation-Invariant Texture Image Retrieval Using Rotated Complex Wavelet Filters, IEEE Trans. Systems, Man, and Cybernetics, 36 (6): 1273-1282, (2006).

DOI: 10.1109/tsmcb.2006.874692

Google Scholar

[8] T. Ojala, M. Pietikainen, D. Harwood, A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, (1996).

DOI: 10.1016/0031-3203(95)00067-4

Google Scholar

[9] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (7): 971-987, (2002).

DOI: 10.1109/tpami.2002.1017623

Google Scholar

[10] M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, (2000).

DOI: 10.1109/cvpr.2005.268

Google Scholar

[11] T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (12): 2037-2041, (2006).

DOI: 10.1109/tpami.2006.244

Google Scholar

[12] G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29 (6): 915-928, (2007).

DOI: 10.1109/tpami.2007.1110

Google Scholar

[13] M. Heikkil; a, M. Pietikainen, A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell., 28 (4): 657-662, (2006).

DOI: 10.1109/tpami.2006.68

Google Scholar

[14] X. Huang, S. Z. Li, Y. Wang, Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, 184-187, (2004).

DOI: 10.1109/icig.2004.127

Google Scholar

[15] M. Heikkila, M. Pietikainen, C. Schmid, Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, (2009).

DOI: 10.1016/j.patcog.2008.08.014

Google Scholar

[16] M. Li, R. C. Staunton, Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, (2008).

DOI: 10.1016/j.patrec.2007.12.001

Google Scholar

[17] Zhang, Y. Gao, S. Zhao, J. Liu, Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc., 19 (2): 533-544, 2010. a) Brodatz, Textures: A Photographic Album for Artists and Designers, New York: Dover, (1996).

DOI: 10.1109/tip.2009.2035882

Google Scholar

[18] University of Suthern California, Signal and Image Processing Institute, Rotated Textures. [Online]. Available: http: /sipi. usc. edu/database.

Google Scholar

[19] MIT Vision and Modeling Group, Vision Texture. [Online]. Available: http: /vismod. www. media. mit. edu.

Google Scholar