Morphological and Crystallographic Characterizations of the Ca-Mg-Zn Intermetallics Appearing in Ternary Diffusion Couples

Article Preview

Abstract:

In the present research, seven multi-phase diffusion couples, with terminal alloys having different microstructural features, were prepared and annealed for 4 weeks at 335°C. The phase relations and change of morphological characteristics of each phase were studied along the diffusion zone by means of scanning electron microscopy/energy dispersive X-ray spectroscopy and quantitative electron probe microanalysis. Depending on the different terminal compositions of the diffusion couples, the morphological evolution in the diffusion zone can be: tooth-like, matrix phase with isolated and/or dendritic precipitates. Electron back-scattered diffraction analysis was carried out to investigate the crystal orientation of the ternary compounds and the crystal orientation relations at the interface of the diffusion zones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

387-392

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Luo, Recent Magnesium Alloys Development for Elevated Temperature Application, International Materials Review, Vol. 49, No. 1, 2004, pp.13-30.

Google Scholar

[2] M. Aljarrah, M. Medraj, X. Wang, E. Essadiqi, G. Dénès and A. Muntasar, Experimental Investigation of the Mg-Al-Ca System, Journal of Alloys and Compounds, Vol. 438, No. 1-2, 2007, pp.131-141.

DOI: 10.1016/j.jallcom.2006.07.034

Google Scholar

[3] F. Nie and B.C. Muddle, Precipitation Hardening of Mg-Ca (-Zn) Alloys, Scripta Materialia, Vol. 37, No. 34, 1997, pp.1475-1481.

DOI: 10.1016/s1359-6462(97)00294-7

Google Scholar

[4] B. Zberg, P.J. Uggowitzer, and J.F. Löffler, MgZnCa Glasses Without Clinically Observable Hydrogen Evolution for Biodegradable Implants, Nature Materials, Vol. 8, 2009, pp.887-891.

DOI: 10.1038/nmat2542

Google Scholar

[5] B. Zberg, E.R. Arataa, P.J. Uggowitzera, and J.F. Löffler, Tensile Properties of Glassy MgZnCa Wires and Reliability Analysis Using Weibull Statistics, Acta Materialia, Vol. 57, No. 11, 2009, pp.3223-3231.

DOI: 10.1016/j.actamat.2009.03.028

Google Scholar

[6] E. Ma and J. Xu, Biodegradable Alloys: The Glass Window of Opportunities, Nature Materials, Vol. 8, 2009, pp.855-857.

Google Scholar

[7] R. Paris, Ternary Alloys, Publications Scientifiques et Techniques du Ministère de L'Air, Ministère de L'Air, No. 45, 1934, pp.1-86.

Google Scholar

[8] J.B. Clark, The Solid Constitution in the Mg-rich Region of the Mg-Ca-Zn Phase Diagram, Trans. AIME, Vol. 221, 1961, pp.644-645.

Google Scholar

[9] J.B. Clark, Joint Committee on Powder Diffraction Standards (JCPDS) Card 12-0266, (1961).

Google Scholar

[10] T.V. Larinova, W.W. Park, and B.S. You, A Ternary Phase Observed in Rapid Solidified Mg-Ca-Zn alloys, Scripta Materialia, Vol. 45, 2001, pp.7-12.

DOI: 10.1016/s1359-6462(01)00982-4

Google Scholar

[11] P.M. Jardim, G. Solorzano, and J.B.V. Sande, Precipitate Crystal Structure Determination in Melt Spun Mg-1. 5wt%Ca-6wt%Zn Alloy, Mircoscopy and Microanaysis, Vol. 8, 2002, pp.487-496.

DOI: 10.1017/s1431927602010413

Google Scholar

[12] K. Oh-ishia, R. Watanabeb, C.L. Mendisa, and K. Hono, Age Hardening Response of Mg-0. 3 at. % Ca alloys with different Zn contents, Materials Science and Engineering: A, Vol. 526, No. 1-2, 2009, pp.177-184.

DOI: 10.1016/j.msea.2009.07.027

Google Scholar

[13] Y.N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, M. Medraj, Determination of the Solubility Range and Crystal Structure of the Mg-rich Ternary Compound in the Ca-Mg-Zn System, Intermetallics, Vol. 18, No. 12, 2010, pp.2402-2411.

DOI: 10.1016/j.intermet.2010.08.033

Google Scholar

[14] J.B. Clark, Joint Committee on Powder Diffraction Standards (JCPDS) Card 12-0569, (1961).

Google Scholar

[15] J. B. Clark, Conventions for Plotting the Diffusion Paths in Multiphase Ternary Diffusion Couples on the Isothermal Section of a Ternary Phase Diagram, Transactions of the Metallurgical Society of AIME, Vol. 227, 1963, pp.1250-1251.

Google Scholar

[16] A.A. Kodentsov, G.F. Bastin, and F.J.J. van Loo, The Diffusion Couple Technique in Phase Diagram Determination, Journal of Alloys and Compounds, Vol. 320, No. 2, 2001, pp.207-217.

DOI: 10.1016/s0925-8388(00)01487-0

Google Scholar

[17] J.C. Zhao, A Combinatorial Approach for Efficient Mapping of Phase Diagram and Properties, Journal of Materials Research, Vol. 16, No. 6, 2001, pp.1565-1578.

Google Scholar

[18] J.C. Zhao, M. R. Jackson, and L.A. Peluso, Determination of the Nb-Cr-Si Phase Diagram Using Diffusion Multiples, Acta Materialia, Vol. 51, No. 20, 2003, pp.6395-6405.

DOI: 10.1016/j.actamat.2003.08.007

Google Scholar

[19] S. Wasiur-Rahman and M. Medraj, Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems, Intermetallics, Vol. 17, No. 10, 2009, pp.847-864.

DOI: 10.1016/j.intermet.2009.03.014

Google Scholar

[20] P. Villars, K. Cenzual, Pearson's Crystal Data - Crystal Structure Database for Inorganic Compounds (on CD-ROM), Release 2009/2010, ASM International, Materials Park, Ohio, USA.

Google Scholar