Crystallization Behavior of Vetiver Grass Fiber-Polylactic Acid Composite

Article Preview

Abstract:

this work, vetiver fiber was used as a filler for poly (lactic acid) (PLA). The thermal properties of neat PLA and vetiver fiber-PLA composites were investigated. Talc as a nucleating agent was used to compare the nucleating effect on crystallization of the composites from vetiver fiber. It was found that crystallization rate was highest in the case of talc-PLA composites. Beside, the crystallization rate of PLA with 20%vetiver fiber content was higher than that of neat PLA and 1-10% (w/w) vetiver fiber-PLA composites. The equilibrium melting temperature (T0m) of neat PLA and PLA composites was obtained from Hoffman-Weeks plot. It was found that the presence of vetiver fiber and talc caused T0m values of PLA decreased compared to that of neat PLA. In addition, T0m values of PLA decreased with increasing vetiver fiber content. For non-isothermal crystallization, degree of crystallinity ( %XC ) increased with the presence of vetiver fiber compared to that of neat PLA. As vetiver fiber content increased, %XC increased. Similarly, the incorporation of talc led to an increase in %XC compared to that of neat PLA. PLA with 1%talc content showed the highest %XC compared to neat PLA and other PLA composites. Moreover, %XC decreased with increasing talc content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-58

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li, H., and Huneault, M. A. (2007). Polymer. 48: 6855-6866.

Google Scholar

[2] Day, M., Victoria, A., Nawaby, and Liao, X. (2006). J. Therm. Anal. Calorim. 86: 623-629.

Google Scholar

[3] Krikorian, V., and Pochan, D. J. (2004). Macromolecules. 37: 6480-6491.

Google Scholar

[4] Junga, Y., Kim, S. -S., Kim, Y., Kim, S. H., Byung, S. K., Kim, Y. S., YongChoi, C., and Kim, S. H. (2005). Biomaterials. 26: 6314-6322.

Google Scholar

[5] Huda, M. S., Drzal, L. T., Mohanty, A. K., and Misra, M. (2008). Compos. Sci. Technol. 68: 424-432.

Google Scholar

[6] Ganster, J., Fink, H. -P., and Pinnow, M. (2006). Compos. Part A. 37: 1796-1804.

Google Scholar

[7] Kuana, C. -F., Kuana, H. -C., M. Mab, C. -C., and Chen, C. -H. (2008). J. Phys. Chem. Solids. 69: 1395-1398.

Google Scholar

[8] Tsuji, H., Kawashima, Y., Takikawa, H., and Tanaka, S. (2007). Polymer. 48: 4213-4225.

Google Scholar

[9] Nishino, T., Hirao, K., and Kotera, M. (2006). Compos. Part A. 37: 2269-2273.

Google Scholar

[10] Wong, S., Shanks, R. A., and Hodzic, A. (2007). Compos. Sci. Technol. 67: 2478-2484.

Google Scholar

[11] Lee, S. -H., and Wang, S. (2006). Compos. Part A. 37: 80-91.

Google Scholar

[12] Hu, R. -H., Lim, J. -K., Kim, C. -I., and Yoon, H. -C. (2007). Eng. Mater. 353-358: 1302-1305.

Google Scholar

[13] Khondker, O. A., Ishiaku, U. S., Nakai, A., and Hamada, H. (2006). Compos. Part A. 37: 2274-2284.

Google Scholar

[14] U. Somnuk, G. Eder, P. Phinyocheep, N. Suppakarn, W. Sutapun and Y. Ruksakulpiwat: J. Appl. Polym. Sci. Vol. 106 (2007), p.2997.

DOI: 10.1002/app.26883

Google Scholar

[15] Vasanthakumari, R., and Penning, A. J. (1983). Polymer. 24: 175-178.

Google Scholar

[16] Cheung, H. -Y., Lau, K. -T., Tao, X. -M., and Hui, D. (2008). Comp. Part B: Eng. 39: 1026-1033.

Google Scholar

[17] Albano, C., Papa, J., Ichazo, M., González, J., and Ustariz, C. (2003). Comp. Struct. 62: 291–302.

Google Scholar

[18] Kawai, T., Rahman, N., Matsuba, G., Nishida, K., Kanaya, T., Nakana, M., Okamoto, H., Kawada, J., Usuki, A., Honma, N., Nakajima, K., and Mutsuda M. (2007). Macromolecules. 40: 9463-9469.

DOI: 10.1021/ma070082c

Google Scholar