Hydrothermal Synthesis, Photoluminescence Property and Superhydrophobicity of In(OH)3

Article Preview

Abstract:

In this work, we fabricated indium hydroxide (In (OH)3) nanocubes from In (NO3)3 and urea through hydrothermal method. NH4OH form the hydrolysis of urea acts as the OH¯ provider. The resultant products were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), photoluminescence (PL) spectra and contact angle meter. It was observed that the In (OH)3 nanocubes showed superhydrophobicity with water contact angle 161.9° after modified with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si (OCH3)3), and exhibited PL peak at about 529 nm, corresponding to the deep level emission.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-166

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, et al.: Science Vol. 293 (2001), p.1455.

Google Scholar

[2] X. Duan, Y. Huang, R. Agarwal, et al.: Nature Vol. 421 (2003), p.241.

Google Scholar

[3] Q. B. Xiao, Y. S. Liu, L. Q. Liu, et al.: J. Phys. Chem. C Vol. 114 (2010), p.9314.

Google Scholar

[4] H. Y. Fan: Chem. Commun. Vol. 12 (2008), p.1383.

Google Scholar

[5] C. L. Yan and D. F. Xue: Adv. Mater. Vol. 12 (2008), p.1055.

Google Scholar

[6] B. X. Li, M. Jing, G. X. Rong, et al.: Langmuir Vol. 22 (2006), p.9380.

Google Scholar

[7] J. Lin, H. Xia, D. F. Xue, et al.: J. Am. Chem. Soc. Vol. 131 (2009), p.12086.

Google Scholar

[8] J. Lin and D. F. Xue: Adv. Mater. Vol. 20 (2008), p.2622.

Google Scholar

[9] J. Lin, F. Liu, K. Gao, et al.: J. Mater. Chem. Vol. 9 (2009), p.6073.

Google Scholar

[10] S. Avivi, Y. Mastai and A. Gedanken: Chem. Mater. Vol. 12 (2000), p.1229.

Google Scholar

[11] D. Zhang, C. Li, X. Liu, et al.: Appl. Phys. Lett. Vol. 83 (2003), p.1845.

Google Scholar

[12] R. G. Gordon, MRS Bull., Vol. 25 (2000), p.52.

Google Scholar

[13] I. Hamberg and C. G. Granqvist: J. Appl. Phys. Vol. 60 (1986), p. R123.

Google Scholar

[14] H. Q. Cao, X. Q. Qiu, Y. Liang, et al.: Appl. Phys. Lett. Vol. 83 (2003), p.761.

Google Scholar

[15] C. H. Lee, M. Kim, T. Kim, et al.: J. Am. Chem. Soc. Vol. 128 (2006), p.9326.

Google Scholar

[16] Z. H. Li, T. T. Dong, Y. F. Zhang, et al.: J. Phys. Chem. C Vol. 111 (2007), p.4727.

Google Scholar

[17] Z. B. Lei, G. J. Ma, M. Y. Liu, et al.: J. Catal. Vol. 237 (2006), p.322.

Google Scholar

[18] L. X. Zhang, Y. C. Zhang and M. Zhang: Mater. Chem. Phys. Vol. 118 (2009), p.223.

Google Scholar

[19] T. J. Yan, X. X. Wang, J. L. Long, et al.: J. Colloid Interface Sci. Vol. 325 (2008), p.425.

Google Scholar

[20] X. J. Tao, L. Sun, Z. W. Li, et al.: Nanoscale Res. Lett. Vol. 5 (2010), p.383.

Google Scholar