Synthesis, Characterization and the Growth Formation of Spindle-Like CdS Nanostructures

Article Preview

Abstract:

Spindle-like CdS structures were successfully synthesized via a simple one-step solvothermal process. The as-prepared products were characterization by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectroscopy (UV-vis). By discussing the captive indimediates, the formation process of the spindle-like CdS structure was proposed as the splitting and the Oswald growth mechanism. The optical property of the as-prepared CdS showed obvious blue shift relative to the bulk CdS materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-162

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Morales and C.M. Liber: Science Vol. 279.

Google Scholar

[5348] (1998), p.208.

Google Scholar

[2] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291.

Google Scholar

[5510] (2001), p. (1947).

Google Scholar

[3] W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Science Vol. 295.

Google Scholar

[5564] (2002), p.2425.

Google Scholar

[4] X. Duan, C. Niu, V. Sahi, et al.: Nature Vol. 425(2003), p.274.

Google Scholar

[5] Y.K. Liu, J.A. Zapien, C.Y. Geng, et al.: Appl. Phys. Lett. Vol. 85 (2004), p.3241.

Google Scholar

[6] J. Zhang, F. Jiang and L. Zhang: J. Phys. Chem. B Vol. 108 (2004), p.7002.

Google Scholar

[7] Y.F. Lin, J.H. Song, Y. Ding, et al.: Appl. Phys. Lett. Vol. 92.

Google Scholar

[2] (2008), p.022105.

Google Scholar

[8] Y.F. Lin, J.H. Song, Y. Ding, et al.: Adv. Mater. Vol. 20 (2008), p.3127.

Google Scholar

[9] J.K. Dongre, V. Nogriya and M. Ramrakhiani: Appl. Surf. Sci. Vol. 255.

Google Scholar

[12] (2009), p.6115.

Google Scholar

[10] Y.Y. Huang, F.Q. Sun, T.X. Wu, et al.: J. Solid. State Chem. Vol. 184.

Google Scholar

[3] (2011), p.644.

Google Scholar

[11] J. Chen and W.J. Li: Chem. Eng. J. Vol. 168.

Google Scholar

[2] (2011), p.903.

Google Scholar

[12] Sh. Ch. Yan, L.T. Sun, P. Qu, et al.: J. Solid. State Chem. Vol. 182.

Google Scholar

[11] 2009), p.2941.

Google Scholar

[13] J.S. Jang, U.A. Joshi and J.S. Lee: J. Phys. Chem. C Vol. 111 (2007), p.13280.

Google Scholar

[14] J. Puthussery, A.D. Lan, T.H. Kosel, et al.: ACS Nano Vol. 2.

Google Scholar

[2] (2008), p.357.

Google Scholar

[15] G. Xie, Z.P. Qiao, M.H. Zeng, et al.: Cryst. Growth Des. Vol. 4.

Google Scholar

[3] (2004), p.513.

Google Scholar

[16] X.Y. Chen, Z.H. Wang, X. Wang, et al.: Inorg. Chem. Vol. 44.

Google Scholar

[4] (2005), p.951.

Google Scholar

[17] Y.W. Jun, S.M. Lee, N.J. Kang, et al.: J. Am. Chem. Soc. Vol. 123 (2001), p.5150.

Google Scholar

[18] J. Tang and A.P. Alivisatos: Nano Lett. Vol. 12(2006), p.2701.

Google Scholar