Optical Properties of Mg(OH)2 Using First-Principles Method

Article Preview

Abstract:

The optical properties of the Mg (OH)2 crystalline powder samples, which were prepared by us, were investigated by first-principles method. The calculated results show that the static state dielectric function ε1(0) for Mg (OH)2 is 2.8673. The peak value range for the Mg (OH)2 absorption coefficient is mainly in the energy range from 45.521 eV to 66.0213 eV. Moreover, absorption coefficient researches its maximum, which is 1490460cm-1, at the energy of 63.7988eV. Besides, when energy is greater than 66.3901eV, the reflectivity rate is one. And the average static state refractive rate n (0) for Mg (OH)2 is 1.6292. While the maximum peak of energy loss function for Mg (OH)2 is in 20.4755eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-431

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.W. Finger and C.T. Prewitt: Geophys. Res. Lett. Vol. 16 (1989), p.1395.

Google Scholar

[2] M. Kanzaki: Phys. Earth Planet. Inter. Vol. 66 (1991), p.307.

Google Scholar

[3] M.B. Kruger: J. Chem. Phys. Vol. 91(1989), p.5910.

Google Scholar

[4] T.S. Duffy, T.J. Ahrens and M.A. Lange: J. Geophys. Res. Vol. 96 (1991), p.14319.

Google Scholar

[5] S.A.T. Redfern and B.J. Wood: Am. Mineral. Vol. 77 (1992), p.1129.

Google Scholar

[6] Y. Fei and H.K. Mao: J. Geophys. Res. Vol. 98 (1993), p.11875.

Google Scholar

[7] J.B. Parise, K. Leinenweber, D.J. Weidnner, et al. Am. Mineral. Vol. 79(1994), p.193.

Google Scholar

[8] M. Catti, G. Ferraris, S. Hull and A. Pavese: Phys. Chem. Miner. Vol. 22(1995), p.200.

Google Scholar

[9] T.S. Duffy, C. Meade, Y. Fei, et al.: Am. Mineral. Vol. 80(1995), p.222.

Google Scholar

[10] H.Q. Cao, H. Zheng, J.F. Yin, et al.: J. Phys. Chem. C, Vol. 114 (2010), p.17362.

Google Scholar

[11] U. Schartel, B. Macromol: Chem. Phys. Vol. 205(2004), p.2185.

Google Scholar

[12] J. Lv, L. Qiu, B. Qu: Nanotechnology. Vol. 15(2004), p.1576.

Google Scholar

[13] D.M. Sherman: Am. Mineral. Vol. 76(1991), p.1769.

Google Scholar

[14] P. D'Arco, M. Caus`a, C. Roetti and B. Silvi: Phys. Rev. B. Vol. 47(1993), p.3522.

Google Scholar

[15] S. Raugei, P.L. Silvestrelli and M. Parrinello: Phys. Rev. Lett. Vol. 83(1999), p.2222.

Google Scholar

[16] T. Paweł, M. Andrzej, P. Krzysztof, et al.: J. Phys.: Condens. Matter. Vol. 22 (2010), p.445403.

Google Scholar

[17] M. Mookherjee and L. Stixrude: Am. Mineral. Vol. 91(2006), p.127.

Google Scholar

[18] F. Zigan and R. Rothbauer: Neues Jahrb. Miner. Monatsh. (1967), p.137.

Google Scholar

[19] D.E. Partin, M. O'Keefe and R.B. Von Dreele: J. Appl. Crystallogr. Vol. 27(1994), p.581.

Google Scholar

[20] H. Megaw: Crystal Structures: A Working Approach (Philadelphia: WB Sanders, 1973).

Google Scholar

[21] J.B. Parise, B. Theroux, R. Li, et al.: Phys. Chem. Miner. Vol. 25(1998), p.130.

Google Scholar

[22] J.B. Parise, J.S. Loveday, R.J. Nelmes and H. Kagi: Phys. Rev. Lett. Vol. 83(1999), p.328.

Google Scholar

[23] L. Desgranges, G. Calvarin and G. Chevrier: Acta Crystallogr. B. Vol. 52(1996), p.82.

Google Scholar

[24] Q.L. Ren, B. Liu, S.T. Chen: Rare Metal Materials Science and Engineering, (2004), p.1.

Google Scholar

[25] X.C. Shen: Semiconductor spectrum and optical property (Science Press, China 1992).

Google Scholar