In Vivo Stability and Biodistribution of Quantum Dots by Inductively Coupled Plasma-Atomic Emission Spectrometry

Article Preview

Abstract:

Here we studied in vivo stability and biodistribution of quantum dots. Their distribution in vivo at various time points were determined by measuring the amount of cadmium ions and selenium ions in various organs by inductively coupled plasma-atomic emission spectrometry. The amount of cadmium ions was higher in liver than in other organs at all times. The amount of cadmium ions in kidney and spleen were increased gradually in time-dependent. There are also obviously increased cadmium ions in lung and heart at all times compared to the control. However the amount of selenium ions was high in all organs except for brain before the 3rd day.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-452

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Blackburn, D.C. Selmarten, R.J. Ellingson, M. Jones, O. Micic and A.J. Nozik: J. Phys. Chem. B Vol. 109 (2005), p.2625.

Google Scholar

[2] H.Y. Li, O. Wunnicke, M.T. Borgström, W.G. Immink, M.H. van Weert, M.A. Verheijen and E.P. Bakkers: Nano. Lett Vol. 7 (2007), p.1144.

DOI: 10.1021/nl0627487

Google Scholar

[3] N.S. Norberg, G.L. Parks, G.M. Salley and D.R. Gamelin: J. Am. Chem. Soc Vol. 128 (2006), p.13195.

Google Scholar

[4] V. Biju, Y. Makita, T. Nagase, Y. Yamaoka, H. Yokoyama, Y. Baba and M. Ishikawa: J. Phys. Chem. B Vol. 109 (2005), p.14350.

DOI: 10.1021/jp0526187

Google Scholar

[5] F.L. Xue, J.Y. Chen, J. Guo, C.C. Wang, W.L. Yang, P.N. Wang and D.R. Lu: J. Fluoresc Vol. 17 (2007), p.149.

Google Scholar

[6] D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise and W.W. Webb: Science Vol. 300 (2003), p.1434.

Google Scholar

[7] B. Ballou, B.C. Lagerholm, L.A. Ernst, M.P. Bruchez and A.S. Waggoner: Bioconjug. Chem Vol. 15 (2004), p.79.

Google Scholar

[8] R. Yang, W. Ji, Y. Yan, Q. Fei , Y. Mu and Q. Jin: Journal of Jilin University (science edition) Vol. 43 (2005), p.863.

Google Scholar

[9] R. Hardman: Environ. Health. Perspect Vol. 114 (2006), p.165.

Google Scholar

[10] K.T. Yong, I. Roy, H. Ding, E.J. Bergey, P.N. Prasad: Small. Vol. 5-17 (2009), p. (1997).

Google Scholar

[11] Z. Chen, H. Chen, H. Meng, G. Xing, X. Gao, B. Sun, X. Shi, H. Yuan, C. Zhang, R. Liu, F. Zhao, Y. Zhao and X. Fang: Toxicology and Applied Pharmacology. Vol. 230-3 (2008), p.364.

DOI: 10.1016/j.taap.2008.03.022

Google Scholar

[12] A.W. al-Shawi and R. Dahl: J Chromatogr. A Vol. 850 (1999), p.137.

Google Scholar

[13] C. Scriver, M. Kan, S. Willie, C. Soo and H. Birnboim: Anal. Bioanal. Chem Vol. 381 (2005), p.1460.

DOI: 10.1007/s00216-005-3125-4

Google Scholar

[14] P. Liang, L. Yang, B. Hu and Z. Jiang: Anal. Sci Vol. 19 (2003), p.1167.

Google Scholar

[15] Z. Fan, B. Hu, Z. Jiang and S. Li: Anal. Bioanal. Chem Vol. 378 (2004), p.456.

Google Scholar

[16] M. Zougagh, P.C. Rudner, A.G. de Torres and J.M. Cano Pavón: Anal. Bioanal. Chem Vol. 378 (2004), p.423.

Google Scholar

[17] M. Chu, X. Shen and G. Liu: Nanotechnology Vol. 17 (2006), p.444.

Google Scholar

[18] X. Gao, Y. Cui, R.M. Levenson, L.W. Chung and S. Nie: Nat. Biotechnol Vol. 22 (2004), p.969.

Google Scholar

[19] A. Hoshino, K. Hanaki, K. Suzuki and K. Yamamoto: Biochem. Biophys. Res. Commun Vol. 314 (2004), p.46.

Google Scholar