[1]
Hinsen K, Thomas A., Field M. J. Analysis of domain motions in lame proteins, [J] Protein, 1999, 34: 369-382.
Google Scholar
[2]
Wriggers W, Schelten K. Protein domain movements: detection of rigid domains and visualiza- tion of hinges in comparison of atomic coordinates, [J] Protein, 1997, 29: 1-14.
DOI: 10.1002/(sici)1097-0134(199709)29:1<1::aid-prot1>3.0.co;2-j
Google Scholar
[3]
Konrad Hinsen, Domain motions in proteins [J] Journal of Molecular Liquids, 2000(84): 53-63.
Google Scholar
[4]
Hayward S. Structural principles governing domain motions in proteins, [J] Proteins, 1999, 36: 425-435.
DOI: 10.1002/(sici)1097-0134(19990901)36:4<425::aid-prot6>3.0.co;2-s
Google Scholar
[5]
Lei. Y., Li H., Zhang R. and Han S. Molecular Dynamics Simulations of Biotin in Aqueous Solution, [J]Phys. Chem. B., 2004, 108: 10131-10137.
DOI: 10.1021/jp049207v
Google Scholar
[6]
Rong Zhang, Haoran Li, Yi Lei, Shijun Han. Different Weak C-H.. O Contacts in N-Mathylacetamide-Water System: Molecular dynamics Simulations and NMR Experimental Study, [J] Phys. Chem. B, 2004, 108: 12596-12601.
DOI: 10.1021/jp049623f
Google Scholar
[7]
Gonzalez-Martinez MA, Puchades R, Maquieira A, et al. Reversible immuonsensor for the automatic determination of atrazine, selection and performance of three polyclonal antisera, [J]Anal. Chim. Acta, 1999, 386(3): 201-210.
DOI: 10.1016/s0003-2670(99)00032-x
Google Scholar
[8]
Federica Rusmini, Zhiyuan Zhong, Jan Feijen, Protein Immobilization Strategies for Protein Biochips, [J] Biomacromolecules. 8(2007), 1775-1789.
DOI: 10.1021/bm061197b
Google Scholar
[9]
Piletsky S, Pletska E, Bossi A, et al. Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization, [J]Biotechnol. Bioeng., 2003: 82-92.
DOI: 10.1002/bit.10544
Google Scholar
[10]
Watts H J, Yeung D, Parkes H. Real-time detection and quantification of DNA hybridization by an optical biosensor, [J]Anal. Chem., 1995, 67: 4283-4289.
DOI: 10.1021/ac00119a013
Google Scholar
[11]
Caruso F, Rodda E, Furlong D N. Quartz crystal micro-balance study of DNA immobilisation and hybridisation for nucleic acid sensor development, [J]Anal. Chem., 1997, 69: 2043-(2049).
DOI: 10.1021/ac961220r
Google Scholar
[12]
Piyali Dutta, Sudeshna Sawoo, Namrata Ray, Engineering Bioactive Surfaces with Fischer Carbene Complex: Protein A on Self-Assembled Monolayer for Antibody Sensing, [J] Bioconjugate Chem. 22(2011), 1202–1209.
DOI: 10.1021/bc200073r
Google Scholar
[13]
Debasis Samanta and Amitabha Sarkar, Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications, [J] Chem. Soc. Rev., 2011, 40, 2567-2592.
DOI: 10.1039/c0cs00056f
Google Scholar
[14]
P Angenendt, J. Glokler, D. Murphy, H. Leheach, D.J. Cahill. Toward optimized antibody microarrays, a comparison of current microarray support materials, [J]Anal Biochem, 2002, 209: 253-260.
DOI: 10.1016/s0003-2697(02)00257-9
Google Scholar
[15]
Jarkko J. Heikkinen, Tiina A. Riihimäki, Covalent Biofunctionalization of Cellulose Acetate with Thermostable, [J] Chimeric Avidin ACS Applied Materials & Interfaces. May 25, (2011).
DOI: 10.1021/am200272u
Google Scholar
[16]
Djane S deJesus, Cristina MCM Couto, Alberto N. Amperometric biosensor based on onoamine oxidase(MAO) immobilized in sol-gel film for benzydamine determination in pharmaceuticals, [J]Pharm. Biomed. Anal., 2003, 33(5): 983-990.
DOI: 10.1016/s0731-7085(03)00378-9
Google Scholar
[17]
Nakamura H. Roles of electrostatic interation in proteins, [J]Q. Rev. Biophys, 1996, 29: 1-90.
Google Scholar
[18]
M. G. Semenova, L. B. Savilova. The role biopolymer structure in interactions between unlike biopolymers in aqueous medium, [J] Food Hydrocolloids, 1998, 12: 65-75.
DOI: 10.1016/s0268-005x(98)00046-0
Google Scholar