Utilize Heavy Metal-Contaminated Farmland to Develop Bioenergy

Article Preview

Abstract:

Currently, the World confronts with several major problems, including environment pollution and energy shortage. To utilize metal-contaminated soils safely and to solve the problem of shortage of farmland for bioenergy development, we have postulated a new strategy of cultivating energy plants in Cd-contaminated soils for bioenergy production, and this can also be combined with phytoremediation. Here, we focus on the advantage and feasibility of this approach by a review of recent developments in basic and applied research relevant. It is concluded that cultivation of energy plants in metal-contaminated land for bioenergy production is a high beneficial, environment-friendly technique that is also technically feasible. It might not only cover the shortages of phytoremediation and bioenergy production, but also makes the metal-contaminated land fully utilized and productive, and this is benefited for both agriculture and farmers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-261

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Pinto, A.M. Mota, A. De Varennes, F.C. Pinto, Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants, Sci. Total. Environ. 326 (2004) 239-247.

DOI: 10.1016/j.scitotenv.2004.01.004

Google Scholar

[2] I.D. Pulford, C. Watson, Phytoremediation of heavy metal-contaminated land by trees-a review, Environ. Int. 29 (2003) 529-540.

DOI: 10.1016/s0160-4120(02)00152-6

Google Scholar

[3] P. Linger, J. Müssig, H. Fischer, J. Kobert, Industrial hemp (Cannabis sativa L. ) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential, Ind. Crop. Prod. 16 (2002) 33-42.

DOI: 10.1016/s0926-6690(02)00005-5

Google Scholar

[4] E. Meers, S. Lamsal, P. Vervaeke, M. Hopgood, N. Lust, F.M.G. Tack, Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site, Environ. Pollut. 137 (2005) 354-364.

DOI: 10.1016/j.envpol.2004.12.019

Google Scholar

[5] A.D. Peuke, H. Rennenberg, Phytoremediation, EMBO Rep. 6 (2005) 497-501.

Google Scholar

[6] S. Saito, Role of nuclear energy to a future society of shortage of energy resources and global warming, J. Nucl. Mater. 398 (2010) 1-9.

Google Scholar

[7] A. Demirbas, Progress and recent trends in biodiesel fuels, Energ. Convers. 50 (2009) 14-34.

Google Scholar

[8] G. Shi, Q. Cai, Cadmium tolerance and accumulation in eight potential energy crops, Biotechnol. Adv. 27 (2009) 555-561.

DOI: 10.1016/j.biotechadv.2009.04.006

Google Scholar

[9] G. Shi, Q. Cai, Zinc tolerance and accumulation in eight oil crops, J. Plant Nutr. 33 (2010) 982-997.

DOI: 10.1080/01904161003728669

Google Scholar

[10] D.O. Hall, Biomass energy in industrialised countries-a view of the future, Forest. Ecol. Manag. 91 (1997) 17-45.

DOI: 10.1016/s0378-1127(96)03883-2

Google Scholar

[11] T.V. Nedelkoska, P.M. Doran, Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining, Miner. Eng. 13 (2000) 549-561.

DOI: 10.1016/s0892-6875(00)00035-2

Google Scholar

[12] R.L. Chaney, C.L. Broadhurst, T. Centofanti, Phytoremediation of Soil Trace Elements. in: P.S. Hooda, (Ed. ), Trace Elements in Soils, John Wiley & Sons, Ltd Chichester, UK., 2010, pp.311-352.

DOI: 10.1002/9781444319477.ch14

Google Scholar

[13] W. Liu, Q. Zhou, J. An, Y. Sun, R. Liu, Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars, J. Hazard. Mat. 173 (2010) 737-743.

DOI: 10.1016/j.jhazmat.2009.08.147

Google Scholar

[14] C.A. Grant, J.M. Clarke, S. Duguid, R.L. Chaney, Selection and breeding of plant cultivars to minimize cadmium accumulation, Sci. Total. Environ. 390 (2008) 301-310.

DOI: 10.1016/j.scitotenv.2007.10.038

Google Scholar

[15] E. Meers, S. Van Slycken, K. Adriaensen, A. Ruttens, J. Vangronsveld, G. Du Laing, N. Witters, T. Thewys, F.M.G. Tack, The use of bio-energy crops (Zea mays) for phytoattenuation, of heavy metals on moderately contaminated soils: A field experiment, Chemosphere 78 (2010).

DOI: 10.1016/j.chemosphere.2009.08.015

Google Scholar

[16] G. Shi, C. Liu, Q. Cai, Q. Liu, C. Hou, Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes, Bull. Environ. Contam. Toxicol. (2010) 1-8.

DOI: 10.1007/s00128-010-0067-0

Google Scholar

[17] C. Liu, J. Guo, Y. Cui, T. Lü, X. Zhang, G. Shi, Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings, Plant Soil 344 (2011) 131-141.

DOI: 10.1007/s11104-011-0733-y

Google Scholar

[18] G. Shi, C. Liu, M. Cui, Y. Ma, Q. Cai, Cadmium tolerance and bioaccumulation of 18 hemp accessions, Appl. Biochem. Biotechnol. (2011) DOI: 10. 1007/s12010-12011-19382-12010.

DOI: 10.1007/s12010-011-9382-0

Google Scholar

[19] Y. Tian, L. Zhao, H. Meng, L. Sun, J. Yan, Estimation of un-used land potential for biofuels development in (the) People's Republic of China, Appl. Energ. 86 (2009) S77-S85.

DOI: 10.1016/j.apenergy.2009.06.007

Google Scholar

[20] S. Wei, T. Chen, Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad, Acta Ecol. Sin. 7 (2001) 1196-1203.

Google Scholar

[21] G.J. Wagner, Accumulation of cadmium in crop plants and its consequences to human health, Adv. Agron. 51 (1993) 173-212.

DOI: 10.1016/s0065-2113(08)60593-3

Google Scholar

[22] S.S. Sharma, K. -J. Dietz, The relationship between metal toxicity and cellular redox imbalance, Trends Plant Sci. 14 (2009) 43-50.

DOI: 10.1016/j.tplants.2008.10.007

Google Scholar

[23] G. Shi, Q. Cai, Q. Liu, L. Wu, Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes, Acta Physiol. Plant. 31 (2009) 969-977.

DOI: 10.1007/s11738-009-0312-5

Google Scholar

[24] G. Shi, Q. Cai, Leaf plasticity in peanut (Arachis hypogaea L. ) in response to heavy metal stress, Environ. Exp. Bot. 67 (2009) 112-117.

DOI: 10.1016/j.envexpbot.2009.02.009

Google Scholar

[25] S. Citterio, A. Santagostino, P. Fumagalli, N. Prato, P. Ranalli, S. Sgorbati, Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. , Plant Soil 256 (2003) 243-252.

DOI: 10.1023/a:1026113905129

Google Scholar

[26] S.D. Ebbs, L.V. Kochian, Toxicity of zinc and copper to Brassica species: implications for phytoremediation, J. Environ. Qual. 26 (1997) 776-781.

DOI: 10.2134/jeq1997.00472425002600030026x

Google Scholar

[27] P. Li, X. Wang, G. Allinson, X. Li, X. Xiong, Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China, J. Hazard. Mater. 161 (2009) 516-521.

DOI: 10.1016/j.jhazmat.2008.03.130

Google Scholar

[28] G.R. Shi, Q.S. Cai, Q.Q. Liu, L. Wu, Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes, Acta Physiol. Plantarum 31 (2009) 969-977.

DOI: 10.1007/s11738-009-0312-5

Google Scholar

[29] P. Linger, A. Ostwald, J. Haensler, Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis, Biologia plantarum 49 (2005) 567-576.

DOI: 10.1007/s10535-005-0051-4

Google Scholar

[30] O. Douchiche, O. Soret-Morvan, W. Chaībi, C. Morvan, F. Paynel, Characteristics of cadmium tolerance in Hermes, flax seedlings: Contribution of cell walls, Chemosphere 81 (2010) 1430-1436.

DOI: 10.1016/j.chemosphere.2010.09.011

Google Scholar

[31] M. Wang, J. Zou, X. Duan, W. Jiang, D. Liu, Cadmium accumulation and its effects on metal uptake in maize (Zea mays L. ), Biores. Technol. 98 (2007) 82-88.

DOI: 10.1016/j.biortech.2005.11.028

Google Scholar

[32] H. Diwan, A. Ahmad, M. Iqbal, Genotypic variation in the phytoremediation potential of Indian mustard for chromium, Environ. Manage. 41 (2008) 734-741.

DOI: 10.1007/s00267-007-9020-3

Google Scholar

[33] V.M.J. Grispen, H.J.M. Nelissen, J.A.C. Verkleij, Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils, Environ. Pollut. 144 (2006) 77-83.

DOI: 10.1016/j.envpol.2006.01.007

Google Scholar

[34] N.M. Dickinson, I.D. Pulford, Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environ. Int. 31 (2005) 609-613.

DOI: 10.1016/j.envint.2004.10.013

Google Scholar

[35] G. Wieshammer, R. Unterbrunner, T.B. García, M.F. Zivkovic, M. Puschenreiter, W.W. Wenzel, Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri, Plant Soil 298 (2007).

DOI: 10.1007/s11104-007-9363-9

Google Scholar

[36] V. Angelova, R. Ivanova, V. Delibaltova, K. Ivanov, Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp), Ind. Crop. Prod. 19 (2004) 197-205.

DOI: 10.1016/j.indcrop.2003.10.001

Google Scholar

[37] D.A. Cataldo, T.R. Garland, R.E. Wildung, Cadmium distribution and chemical fate in soybean plants, Plant Physiol. 68 (1981) 835-839.

DOI: 10.1104/pp.68.4.835

Google Scholar

[38] D.A. Cataldo, T.R. Garland, R.E. Wildung, H. Drucker, Nickel in plants: II. Distribution and chemical form in soybean plants, Plant Physiol. 62 (1978) 566-570.

DOI: 10.1104/pp.62.4.566

Google Scholar

[39] S. Wang, Y. Wang, H. Zhang, Effects of cadmium stress on peanut seed quality and related response mechanisms, Chin. J. Ecol. 26 (2007) 1761-1765.

Google Scholar

[40] C. Lievens, R. Carleer, T. Cornelissen, J. Yperman, Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part, Fuel 88 (2009) 1417-1425.

DOI: 10.1016/j.fuel.2009.02.007

Google Scholar

[41] C. Lievens, J. Yperman, J. Vangronsveld, R. Carleer, Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals, Fuel 87 (2008).

DOI: 10.1016/j.fuel.2007.10.021

Google Scholar

[42] C. Lievens, J. Yperman, T. Cornelissen, R. Carleer, Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part II: Characterisation of the liquid and gaseous fraction as a function of the temperature, Fuel 87 (2008).

DOI: 10.1016/j.fuel.2007.10.023

Google Scholar