[1]
A.P. Pinto, A.M. Mota, A. De Varennes, F.C. Pinto, Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants, Sci. Total. Environ. 326 (2004) 239-247.
DOI: 10.1016/j.scitotenv.2004.01.004
Google Scholar
[2]
I.D. Pulford, C. Watson, Phytoremediation of heavy metal-contaminated land by trees-a review, Environ. Int. 29 (2003) 529-540.
DOI: 10.1016/s0160-4120(02)00152-6
Google Scholar
[3]
P. Linger, J. Müssig, H. Fischer, J. Kobert, Industrial hemp (Cannabis sativa L. ) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential, Ind. Crop. Prod. 16 (2002) 33-42.
DOI: 10.1016/s0926-6690(02)00005-5
Google Scholar
[4]
E. Meers, S. Lamsal, P. Vervaeke, M. Hopgood, N. Lust, F.M.G. Tack, Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site, Environ. Pollut. 137 (2005) 354-364.
DOI: 10.1016/j.envpol.2004.12.019
Google Scholar
[5]
A.D. Peuke, H. Rennenberg, Phytoremediation, EMBO Rep. 6 (2005) 497-501.
Google Scholar
[6]
S. Saito, Role of nuclear energy to a future society of shortage of energy resources and global warming, J. Nucl. Mater. 398 (2010) 1-9.
Google Scholar
[7]
A. Demirbas, Progress and recent trends in biodiesel fuels, Energ. Convers. 50 (2009) 14-34.
Google Scholar
[8]
G. Shi, Q. Cai, Cadmium tolerance and accumulation in eight potential energy crops, Biotechnol. Adv. 27 (2009) 555-561.
DOI: 10.1016/j.biotechadv.2009.04.006
Google Scholar
[9]
G. Shi, Q. Cai, Zinc tolerance and accumulation in eight oil crops, J. Plant Nutr. 33 (2010) 982-997.
DOI: 10.1080/01904161003728669
Google Scholar
[10]
D.O. Hall, Biomass energy in industrialised countries-a view of the future, Forest. Ecol. Manag. 91 (1997) 17-45.
DOI: 10.1016/s0378-1127(96)03883-2
Google Scholar
[11]
T.V. Nedelkoska, P.M. Doran, Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining, Miner. Eng. 13 (2000) 549-561.
DOI: 10.1016/s0892-6875(00)00035-2
Google Scholar
[12]
R.L. Chaney, C.L. Broadhurst, T. Centofanti, Phytoremediation of Soil Trace Elements. in: P.S. Hooda, (Ed. ), Trace Elements in Soils, John Wiley & Sons, Ltd Chichester, UK., 2010, pp.311-352.
DOI: 10.1002/9781444319477.ch14
Google Scholar
[13]
W. Liu, Q. Zhou, J. An, Y. Sun, R. Liu, Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars, J. Hazard. Mat. 173 (2010) 737-743.
DOI: 10.1016/j.jhazmat.2009.08.147
Google Scholar
[14]
C.A. Grant, J.M. Clarke, S. Duguid, R.L. Chaney, Selection and breeding of plant cultivars to minimize cadmium accumulation, Sci. Total. Environ. 390 (2008) 301-310.
DOI: 10.1016/j.scitotenv.2007.10.038
Google Scholar
[15]
E. Meers, S. Van Slycken, K. Adriaensen, A. Ruttens, J. Vangronsveld, G. Du Laing, N. Witters, T. Thewys, F.M.G. Tack, The use of bio-energy crops (Zea mays) for phytoattenuation, of heavy metals on moderately contaminated soils: A field experiment, Chemosphere 78 (2010).
DOI: 10.1016/j.chemosphere.2009.08.015
Google Scholar
[16]
G. Shi, C. Liu, Q. Cai, Q. Liu, C. Hou, Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes, Bull. Environ. Contam. Toxicol. (2010) 1-8.
DOI: 10.1007/s00128-010-0067-0
Google Scholar
[17]
C. Liu, J. Guo, Y. Cui, T. Lü, X. Zhang, G. Shi, Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings, Plant Soil 344 (2011) 131-141.
DOI: 10.1007/s11104-011-0733-y
Google Scholar
[18]
G. Shi, C. Liu, M. Cui, Y. Ma, Q. Cai, Cadmium tolerance and bioaccumulation of 18 hemp accessions, Appl. Biochem. Biotechnol. (2011) DOI: 10. 1007/s12010-12011-19382-12010.
DOI: 10.1007/s12010-011-9382-0
Google Scholar
[19]
Y. Tian, L. Zhao, H. Meng, L. Sun, J. Yan, Estimation of un-used land potential for biofuels development in (the) People's Republic of China, Appl. Energ. 86 (2009) S77-S85.
DOI: 10.1016/j.apenergy.2009.06.007
Google Scholar
[20]
S. Wei, T. Chen, Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad, Acta Ecol. Sin. 7 (2001) 1196-1203.
Google Scholar
[21]
G.J. Wagner, Accumulation of cadmium in crop plants and its consequences to human health, Adv. Agron. 51 (1993) 173-212.
DOI: 10.1016/s0065-2113(08)60593-3
Google Scholar
[22]
S.S. Sharma, K. -J. Dietz, The relationship between metal toxicity and cellular redox imbalance, Trends Plant Sci. 14 (2009) 43-50.
DOI: 10.1016/j.tplants.2008.10.007
Google Scholar
[23]
G. Shi, Q. Cai, Q. Liu, L. Wu, Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes, Acta Physiol. Plant. 31 (2009) 969-977.
DOI: 10.1007/s11738-009-0312-5
Google Scholar
[24]
G. Shi, Q. Cai, Leaf plasticity in peanut (Arachis hypogaea L. ) in response to heavy metal stress, Environ. Exp. Bot. 67 (2009) 112-117.
DOI: 10.1016/j.envexpbot.2009.02.009
Google Scholar
[25]
S. Citterio, A. Santagostino, P. Fumagalli, N. Prato, P. Ranalli, S. Sgorbati, Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. , Plant Soil 256 (2003) 243-252.
DOI: 10.1023/a:1026113905129
Google Scholar
[26]
S.D. Ebbs, L.V. Kochian, Toxicity of zinc and copper to Brassica species: implications for phytoremediation, J. Environ. Qual. 26 (1997) 776-781.
DOI: 10.2134/jeq1997.00472425002600030026x
Google Scholar
[27]
P. Li, X. Wang, G. Allinson, X. Li, X. Xiong, Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China, J. Hazard. Mater. 161 (2009) 516-521.
DOI: 10.1016/j.jhazmat.2008.03.130
Google Scholar
[28]
G.R. Shi, Q.S. Cai, Q.Q. Liu, L. Wu, Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes, Acta Physiol. Plantarum 31 (2009) 969-977.
DOI: 10.1007/s11738-009-0312-5
Google Scholar
[29]
P. Linger, A. Ostwald, J. Haensler, Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis, Biologia plantarum 49 (2005) 567-576.
DOI: 10.1007/s10535-005-0051-4
Google Scholar
[30]
O. Douchiche, O. Soret-Morvan, W. Chaībi, C. Morvan, F. Paynel, Characteristics of cadmium tolerance in Hermes, flax seedlings: Contribution of cell walls, Chemosphere 81 (2010) 1430-1436.
DOI: 10.1016/j.chemosphere.2010.09.011
Google Scholar
[31]
M. Wang, J. Zou, X. Duan, W. Jiang, D. Liu, Cadmium accumulation and its effects on metal uptake in maize (Zea mays L. ), Biores. Technol. 98 (2007) 82-88.
DOI: 10.1016/j.biortech.2005.11.028
Google Scholar
[32]
H. Diwan, A. Ahmad, M. Iqbal, Genotypic variation in the phytoremediation potential of Indian mustard for chromium, Environ. Manage. 41 (2008) 734-741.
DOI: 10.1007/s00267-007-9020-3
Google Scholar
[33]
V.M.J. Grispen, H.J.M. Nelissen, J.A.C. Verkleij, Phytoextraction with Brassica napus L.: A tool for sustainable management of heavy metal contaminated soils, Environ. Pollut. 144 (2006) 77-83.
DOI: 10.1016/j.envpol.2006.01.007
Google Scholar
[34]
N.M. Dickinson, I.D. Pulford, Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environ. Int. 31 (2005) 609-613.
DOI: 10.1016/j.envint.2004.10.013
Google Scholar
[35]
G. Wieshammer, R. Unterbrunner, T.B. García, M.F. Zivkovic, M. Puschenreiter, W.W. Wenzel, Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri, Plant Soil 298 (2007).
DOI: 10.1007/s11104-007-9363-9
Google Scholar
[36]
V. Angelova, R. Ivanova, V. Delibaltova, K. Ivanov, Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp), Ind. Crop. Prod. 19 (2004) 197-205.
DOI: 10.1016/j.indcrop.2003.10.001
Google Scholar
[37]
D.A. Cataldo, T.R. Garland, R.E. Wildung, Cadmium distribution and chemical fate in soybean plants, Plant Physiol. 68 (1981) 835-839.
DOI: 10.1104/pp.68.4.835
Google Scholar
[38]
D.A. Cataldo, T.R. Garland, R.E. Wildung, H. Drucker, Nickel in plants: II. Distribution and chemical form in soybean plants, Plant Physiol. 62 (1978) 566-570.
DOI: 10.1104/pp.62.4.566
Google Scholar
[39]
S. Wang, Y. Wang, H. Zhang, Effects of cadmium stress on peanut seed quality and related response mechanisms, Chin. J. Ecol. 26 (2007) 1761-1765.
Google Scholar
[40]
C. Lievens, R. Carleer, T. Cornelissen, J. Yperman, Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part, Fuel 88 (2009) 1417-1425.
DOI: 10.1016/j.fuel.2009.02.007
Google Scholar
[41]
C. Lievens, J. Yperman, J. Vangronsveld, R. Carleer, Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals, Fuel 87 (2008).
DOI: 10.1016/j.fuel.2007.10.021
Google Scholar
[42]
C. Lievens, J. Yperman, T. Cornelissen, R. Carleer, Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part II: Characterisation of the liquid and gaseous fraction as a function of the temperature, Fuel 87 (2008).
DOI: 10.1016/j.fuel.2007.10.023
Google Scholar