The Influence of Ba-Ti Ratio on the Electrical Properties and Microstructures of the BaM-0.007Sm0.007TiO3 Based Ceramics Fired in Reducing Atmosphere

Article Preview

Abstract:

Electrical properties, positive temperature coefficient of resistivity (PTCR), and microstructures of (Bam-0.007Sm0.007)TiO3 (BST) with different Ba-site/Ti-site (A/B) ratio sintered in a reducing atmosphere and reoxidized in air are investigated. The results reveal that the room temperature resistivity of the semiconducting BST ceramics first decreases and then increases with increasing of A/B ratio (m), particularly when m is equal to 1.006, the semiconducting BST ceramics which have been sintered in a reducing atmosphere and reoxidized at 800°C exhibit significant PTCR effect with a resistance jumping ratio of 3 orders magnitude, and achieve a lower room temperature resisitivity of 80.8 Ω∙cm, in addition, the grain size distribution of the Ti-excess specimens is much better than that of the Ba-excess ones.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1032-1037

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.K. Chung and S.C. Choi: J. Korean Chem. Soc. Vol. 46, No. 3 (2009), pp.330-335.

Google Scholar

[2] Z.C. Li, H. Zhang, X.D. Zou and B. Bergman: Mater. Sci. Eng. , B Vol. 116 (2005), pp.34-39.

Google Scholar

[3] M.W. Mancini and P.I. Paulin Filho: J. Appl. Phys. Vol. 100 (2006), p.104501.

Google Scholar

[4] J. Illingsworth, H.M. AI-Allak, A.W. Brinkman and J. Woods: J. Appl. Phys. Vol. 67, No. 4 (1990), p.2088.

Google Scholar

[5] W. Heywang: J. Am. Ceram. Soc. Vol. 47, No. 10 (1964), p.484.

Google Scholar

[6] W. Heywang: Solid-State Electron. Vol. 3 (1961), p.51.

Google Scholar

[7] G.H. Jonker: Solid-State Electron. Vol. 7 (1964), pp.895-903.

Google Scholar

[8] P.H. Xiang, H. Harinaka, H. Takeda, T. Nishida, K. Uchiyama and T. Shiosaki: J. Appl. Phys. Vol. 104, (2008), p.094108.

Google Scholar

[9] W.H. Yang, Y.P. Pu, X.L. Chen and J.F. Wang: J. Phys. : Conference Series Vol. 152 (2009), p.012040.

Google Scholar

[10] A. Kanda, S. Tashiro and H. Igarashi: Jpn. J. Appl. Phys. Vol. 33 (1994), pp.5431-5434.

Google Scholar

[11] H. Niimi, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 10A (2007), pp.6715-6718.

DOI: 10.1143/jjap.46.6715

Google Scholar

[12] H. Niimi, Hikone, A. Ando and Omihachiman, U.S. Patent 7,348,873 B2 (2008).

Google Scholar

[13] H. Niimi, Hikone, T. Matsunaga and Shiga-ken, U.S. Patent 6,359,327 B1 (2002).

Google Scholar

[14] H. Niimi and Hikone-shi U.S. Patent 2004/0084132 A1 (2004).

Google Scholar

[15] H. Niimi, K. Mihara and Y. Sakabe: J. Am. Ceram. Soc. Vol. 90 No.6 (2007) pp.1817-1821.

Google Scholar

[16] H. Niimi, T. Ishikawa, K. Mihara, Y. Sakabe and M. Kuwabara: Jpn. J. Appl. Phys. Vol. 46, No. 2 (2007), pp.675-680.

Google Scholar

[17] J.K. Lee and K.S. Hong: J. Am. Ceram. Soc. Vol. 84, No. 9 (2001), p.2001–2006.

Google Scholar

[18] W.H. Lee, T.Y. Tseng: J. Mater. Sci. - Mater. Electron. Vol. 11 (2000), pp.157-162.

Google Scholar

[19] M.P. Chun, J.H. Nam, J.H. Cho and B.I. Kim: J. Korean Chem. Soc. Vol. 11, No. 1 (2010), pp.112-115.

Google Scholar

[20] S.K. Jo and Y.H. Han: Jpn. J. Appl. Phys. Vol. 46, No. 3A (2007), pp.1076-1080.

Google Scholar