Effect of Fe2O3 Dopant on Electronic Densities and Electrical Properties of ZnO-Based Varistors

Article Preview

Abstract:

The effect of the Fe2O3 dopant on the electronic densities and the electrical properties has been studied in a ZnO-Bi2O3-SnO2-Co2O3-MnO2-TiO2-Ni2O3-Fe2O3 system by the measurements of positron lifetime spectra, coincidence Doppler broadening spectra and current-voltage characteristics. The results show that the 3d electron signal in the spectrum of the varistor increases with the Fe2O3 content. The addition of small amount of Fe2O3 into the ZnO-based varistor leads to an increase in the donor concentration in the bulk and the defects in the varistor. As the Fe2O3 content increased, the threshold voltage (VT) and the nonlinear coefficient (α) of the varistor decreased monotonously.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1042-1045

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. K.Gupta: J. Am. Ceram. Sos Vol. 73 (1990), p.1817

Google Scholar

[2] K. Eda, A. Iga, M. Matsuoka: J. Appl. Phys. Vol. 51 (1980), p.2678

Google Scholar

[3] J. Wong: J. Appl. Phys. Vol. 51 (1980), p.4453

Google Scholar

[4] A. B. Alles, R. Puskas, G. Callahan, V. L. Burdick: J. Am. Ceram. Soc. Vol. 76 (1993), p.(2098)

Google Scholar

[5] H. H. Hng, K.M. Knowles: J. Mater. Sci. Vol. 37 (2002), p.1143

Google Scholar

[6] K. Eda: J. Appl. Phys. Vol. 49 (1978), p.2964

Google Scholar

[7] G. D. Mahan, Lionel M. Levinson, H. R. Philipp: J. Appl. Phys. Vol. 50 (1979), p.2799

Google Scholar

[8] Marco Peiteado, José F. Fernández, Amador C. Caballero: Journal of the European Ceramic Society Vol. 27 (2007), p.3867

Google Scholar

[9] C. H. Kim, J. H. Kim: Journal of the European Ceramic Society Vol. 24 (2004), p.2537

Google Scholar

[10] H. H. Hng, P. L. Chan: Ceramics International Vol. 35 (2009), p.409

Google Scholar

[11] D. Xu, L. Y. Shi, Z. H. Wu, Q. D. Zhong, X. X. Wu: J. Euro. Ceram. Soc. Vol. 29 (2009), p.1789

Google Scholar

[12] J. L. He, J. Liu, J. Hu, R. Zeng, W. C. Long: J. Europ. Ceram. Soc. Vol. 31 (2011), p.1451

Google Scholar

[13] R. N. West: Adv. Phys. Vol. 22 (1973), p.263

Google Scholar

[14] K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, E. Bonderup, J. Golochenko: Phys. Rev. Lett. Vol. 38 (1977), p.241

Google Scholar

[15] M. Alatalo, H. Kauppinen, K. Saarinen, M. J. Puska, J. Mäinen, P. Hautojävi, R. M. Nieminen: Phys. Rev. B Vol. 51 (1995), p.4176

Google Scholar

[16] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, D. Pliszka: Appl. Phys. Lett., Vol. 79 (2001), p.1492

Google Scholar

[17] W. Deng, X. D. Ruan, Y. Y. Huang, Y. E. Yin, Y. Y. Zhu, L. X. Luo: Acta Metallurgica Sinica Vol. 41 (2005), p.33

Google Scholar

[18] S. Szpala, P. Asoka-Kumar, B. Nielsen, J. P. Peng, S. Hayakawa, K. G. Lynn, H. J. Gossmann: Phys. Rev. B Vol. 54 (1996), p.4722

DOI: 10.1103/physrevb.54.4722

Google Scholar

[19] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca: Nuclear Instruments and Methods Section B Vol. 194 (2002), p.519

Google Scholar

[20] W. Deng, Y. Y. Huang, R. S. Brusa, G. P. Karwasz, A. Zecca: Journal of Alloys and Compounds Vol. 386 (2005), p.103

Google Scholar

[21] W. Brandt, R. Paulin: Phys. Rev. B Vol. 5 (1972), p.2430

Google Scholar

[22] W. Brandt, J. Reinheimer: Phys. Lett. A Vol. 35 (1971), p.109

Google Scholar