Titanium Boride in High Nb Containing TiAl Alloy: Morphology and Effect on Mechanical Properties

Article Preview

Abstract:

The morphology of titanium boride in as-cast and as-forged Ti-45Al-8.5Nb-(W, B, Y) alloy containing 0.2at. % boron and the effect of borides on tensile and creep properties of the alloy are investigated. The results show that in as-cast alloy the morphology of boride appears mainly convoluted ribbons with some flakes and particles. With the extent of forging increases, the length of the ribbons decreases and their distribution is more uniform. The long ribbon in as-cast alloy is detrimental to tensile properties at both room temperature (RT) and high temperatures. The short ribbon in as-forged alloy is not harmful to RT tensile properties, but is harmful to tensile and creep properties at high temperatures. The harmful effect of the boride is due to the strain incompatibility of boride and matrix, which causes many cavities at boride/matrix boundaries and results in ultimate fracture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1121-1126

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Chen, W. Zhang, Y. Wang, G. Wang, Z. Sun, in: Structural Intermetallic, edited by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, Warrendale, PA, TMS Publishers, (1993) p.319

Google Scholar

[2] G. Chen, Z. sun and X. Zhou: Corrosion Vol. 48(1992), p.939

Google Scholar

[3] M. Yoshinara and K. Miura: Intermetallics Vol. 3 (1995), p.357

Google Scholar

[4] Z.C. Liu, J.P. Lin, S.J. Li, et al: Intermetallics Vol. 10 (2001), p.6

Google Scholar

[5] W.J. Zhang, G.L. Chen, F. Apple, et al: Mater. Sci. Eng. A Vol.315 (2001), p.250

Google Scholar

[6] W.J. Zhang, S.C. Deevi: Mater. Sci. Eng. A Vol.337 (2002), p.17

Google Scholar

[7] U. Hecht, V. Witusiewicz, A. Drevermann, et al: Intermetallics Vol.16 (2008), p.969

Google Scholar

[8] T.T. Cheng, M.R. Willisband and I.P. Jones: Intermetallics Vol.7 (1999), p.89

Google Scholar

[9] T.T. Cheng: Intermetallics Vol.8 (2000), p.29

Google Scholar

[10] D Hu, J F Mei, M Wichins, et al: Scripta Mater. Vol.47 (2002), p.273

Google Scholar

[11] C.L. Chen, W. Lu, J.P. Lin, et al: Scripta Mater. Vol.56 (2007), p.441

Google Scholar

[12] U. Kitkamthorn, L.C. Zhang and M. Aindow: Intermetallics Vol.14 (2006), p.759

Google Scholar

[13] D. Hu: Intermetallics Vol.9 (2001), p.1037.

Google Scholar

[14] M.E. Hyman, C. Mccullough and C.G. Levi: Metall. Trans. A Vol.22 (1991), p.1647

Google Scholar

[15] D.J. Larson, C.T. Liu and M.K. Miller Intermetallics Vol.5 (1997), p.411

Google Scholar

[16] G.L. Chen, W.J. Zhang, Z. C. Liu, et al, in: Structural Intermetallics, edited by M.V. Nathal, R. Dorolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, Warrendale, PA, TMS Publishers, (1997) p.371

Google Scholar