Influence of Nb and Sn on d Electrons of TiAl Alloys Studied by Coincidence Positron Annihilation Spectroscopy

Article Preview

Abstract:

The coincidence Doppler broadening spectra of single crystals of Si, Al, polycrystals of Ti, Nb and Sn, and TiAl-based alloys (TiAl, Ti50Al48Nb2 and Ti50Al48Sn2) have been measured and analyzed. It has been found that the 3d electron signal for binary TiAl alloy is lower than expected due to the Ti 3d-Al 3p interactions. The addition of Nb atoms to TiAl alloy leads to the enhancement of d-d interactions and thus the d electron signal in the spectrum. The d electron signal in the spectrum of Ti50Al48Nb2 alloy is higher than that of Ti50Al48Sn2 alloy. The influence of Nb and Sn on d electrons of TiAl alloys has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1132-1135

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. H. Paul, F. Appel, Wagner: Acta Mater. Vol. 46 (1998), p.1075

Google Scholar

[2] K. Ito, V. Vitek: Acta Mater. Vol. 46 (1998), p.5435

Google Scholar

[3] S. C. Huang, E. L. Hall: Metall. Trans. A Vol. 22 (1991), p.427

Google Scholar

[4] X. P. Song, G. L. Chen: Mater. Lett. Vol. 48 (2001), p.273

Google Scholar

[5] S. C. Huang, E. L. Hall: Metall. Trans. A Vol. 22 (1991), p.2619

Google Scholar

[6] J. Y. Jung, J. K. Park: Acta Mater. Vol. 46 (1998), p.4123

Google Scholar

[7] T. Hanamura, R. Uemori, M. Tanino: J. Mater. Res. Vol. 3 (1988), p.656

Google Scholar

[8] S. C. Huang, E. L.Hall: Acta Metall. Mater. Vol. 39 (1991), p.1053

Google Scholar

[9] W. Deng, D. K. Xiong, J. Y. Wang, L. Y. Xiong, M. Z. Cao, C. W. Lung: J. Mater. Sci. Technol., Vol. 19 (2003) p.164

Google Scholar

[10] M. Morinaga, J. Saito, N. Yukawa, H. Adachi: Acta Metall. Mater. Vol. 38 (1990), p.25

Google Scholar

[11] W. Deng, Y.Y. Huang, D. H. Wu, M. Z. Cao, L. Y. Xiong: Materials Letters Vol. 56 (2002), p.593

Google Scholar

[12] K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, E. Bonderup, J. Golochenko: Phys. Rev. Lett. Vol. 38 (1977), p.241

Google Scholar

[13] M. Alatalo, H. Kauppinen, K. Saarinen, M. J. Puska, J. Mäinen, P. Hautojävi, R. M. Nieminen: Phys. Rev. B Vol. 51 (1995), p.4176

Google Scholar

[14] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, D. Pliszka: Appl. Phys. Lett. Vol. 79 (2001) p.1492

Google Scholar

[15] W. Deng, X. D. Ruan, Y. Y. Huang, Y. E. Yin, Y. Y. Zhu, L. X. Luo: Acta Metallurgica Sinica Vol. 41 (2005), p.33

Google Scholar

[16] S. Szpala, P. Asoka-Kumar, B. Nielsen, J. P. Peng, S. Hayakawa, K. G. Lynn, H. J. Gossmann: Phys. Rev. B Vol. 54 (1996), p.4722

DOI: 10.1103/physrevb.54.4722

Google Scholar

[17] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca: Nuclear Instruments and Methods Section B Vol. 194 (2002), p.519

Google Scholar

[18] V. J. Ghosh, M. Alatalo, P. Asoka-Kumar, B. Nielsen and K. G. Lynn: Phys. Rev. B Vol. 61 (2000), p.10092

Google Scholar