Influence of Nb and Sn on d Electrons of TiAl Alloys Studied by Coincidence Positron Annihilation Spectroscopy

Abstract:

Article Preview

The coincidence Doppler broadening spectra of single crystals of Si, Al, polycrystals of Ti, Nb and Sn, and TiAl-based alloys (TiAl, Ti50Al48Nb2 and Ti50Al48Sn2) have been measured and analyzed. It has been found that the 3d electron signal for binary TiAl alloy is lower than expected due to the Ti 3d-Al 3p interactions. The addition of Nb atoms to TiAl alloy leads to the enhancement of d-d interactions and thus the d electron signal in the spectrum. The d electron signal in the spectrum of Ti50Al48Nb2 alloy is higher than that of Ti50Al48Sn2 alloy. The influence of Nb and Sn on d electrons of TiAl alloys has been discussed.

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Edited by:

Jinglong Bu, Zhengyi Jiang and Sihai Jiao

Pages:

1132-1135

DOI:

10.4028/www.scientific.net/AMR.415-417.1132

Citation:

J. Gao et al., "Influence of Nb and Sn on d Electrons of TiAl Alloys Studied by Coincidence Positron Annihilation Spectroscopy", Advanced Materials Research, Vols. 415-417, pp. 1132-1135, 2012

Online since:

December 2011

Export:

Price:

$35.00

[1] J. D. H. Paul, F. Appel, Wagner: Acta Mater. Vol. 46 (1998), p.1075.

[2] K. Ito, V. Vitek: Acta Mater. Vol. 46 (1998), p.5435.

[3] S. C. Huang, E. L. Hall: Metall. Trans. A Vol. 22 (1991), p.427.

[4] X. P. Song, G. L. Chen: Mater. Lett. Vol. 48 (2001), p.273.

[5] S. C. Huang, E. L. Hall: Metall. Trans. A Vol. 22 (1991), p.2619.

[6] J. Y. Jung, J. K. Park: Acta Mater. Vol. 46 (1998), p.4123.

[7] T. Hanamura, R. Uemori, M. Tanino: J. Mater. Res. Vol. 3 (1988), p.656.

[8] S. C. Huang, E. L. Hall: Acta Metall. Mater. Vol. 39 (1991), p.1053.

[9] W. Deng, D. K. Xiong, J. Y. Wang, L. Y. Xiong, M. Z. Cao, C. W. Lung: J. Mater. Sci. Technol., Vol. 19 (2003) p.164.

[10] M. Morinaga, J. Saito, N. Yukawa, H. Adachi: Acta Metall. Mater. Vol. 38 (1990), p.25.

[11] W. Deng, Y.Y. Huang, D. H. Wu, M. Z. Cao, L. Y. Xiong: Materials Letters Vol. 56 (2002), p.593.

[12] K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, E. Bonderup, J. Golochenko: Phys. Rev. Lett. Vol. 38 (1977), p.241.

[13] M. Alatalo, H. Kauppinen, K. Saarinen, M. J. Puska, J. Mäinen, P. Hautojävi, R. M. Nieminen: Phys. Rev. B Vol. 51 (1995), p.4176.

[14] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, D. Pliszka: Appl. Phys. Lett. Vol. 79 (2001) p.1492.

[15] W. Deng, X. D. Ruan, Y. Y. Huang, Y. E. Yin, Y. Y. Zhu, L. X. Luo: Acta Metallurgica Sinica Vol. 41 (2005), p.33.

[16] S. Szpala, P. Asoka-Kumar, B. Nielsen, J. P. Peng, S. Hayakawa, K. G. Lynn, H. J. Gossmann: Phys. Rev. B Vol. 54 (1996), p.4722.

[17] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca: Nuclear Instruments and Methods Section B Vol. 194 (2002), p.519.

[18] V. J. Ghosh, M. Alatalo, P. Asoka-Kumar, B. Nielsen and K. G. Lynn: Phys. Rev. B Vol. 61 (2000), p.10092.

In order to see related information, you need to Login.