Preparation and Mechanical Properties of a Bulk Icosahedral Quasicrystalline Ti-Zr-Sc-Ni Alloy

Article Preview

Abstract:

The discovery of the icosahedral quasicrystalline phase (i-phase) in as-cast Ti40.83Zr40.83-xScxNi18.34 (x = 0~2.0) alloys is described herein. The effect of Sc on the structure and mechanical properties of the bulk quasicrystalline alloys is investigated. The results show that the phase structure of the as-cast alloys are mainly composed of icosahedral phase accompanied by minor C14 Laves phase (L-phase), and the mechanical properties of the bulk quasicrystalline alloys have been examined at room temperature, the compressive fracture strength first increased and then decreased with increasing x from 0.4 to 2.0, and the highest strength is near 1400 MPa when x =1.2, it was 380 MPa higher than the without Sc alloy. The bulk quasicrystalline alloy exhibits the elastic deformation by the compressive test, and the fracture mode was brittle cleavage fracture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1153-1156

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Shechtman, I. Blech, D. Gratias and J.W. Cahn: Phys. Rev. Lett. Vol. 53 (1984), p.1951.

Google Scholar

[2] K.F. Kelton, W.J. Kim and R.M. Stround: Appl. Phys. Lett. Vol. 70 (1997), p.3230.

Google Scholar

[3] L. Wang, C. Li, L. Ma and A. Inoue: J. of Alloys & Comp. Vol. 339 (2002), p.216.

Google Scholar

[4] B. Liu, J. Liu, G. Mi, Z. Zhang, Y. Wu and L. Wang: J. of Alloys & Comp. Vol. 475 (2009), p.881

Google Scholar

[5] B. Liu, G. Fan, Y. Wang, Y. Wu and L. Wang: Int. J. Hydrogen Energy Vol. 33(2008), P. 5801.

Google Scholar

[6] P. A. Bancel, P. A. Heiney, A.I. Goldman, P.M. Horn: Phys. Rev. Lett. Vol. 54 (1985), p.2422.

Google Scholar

[7] A. Inoue: Bulk Amorphous Alloys. (Trans. Tech. Publications 1998 Sendai) P. 1-36.

Google Scholar

[8] S. Yi, K.B. Kim, E. Fleury, W.T. Kim, D.H. Kim: Mater. Lett. Vol. 52(2002), p.75.

Google Scholar

[9] J. Qiang, Z. Wei, H. Huang, N. Jiang, C. Dong: Acta Physica Sinica Vol. 54 (2005), p.1909.

Google Scholar

[10] C. Dong, Quasicrystalline Materials, National Defence Industry Press, Beijing, 1998, 159.

Google Scholar

[11] Y. Yokoyama, A. Inoue, T. Masumoto: Mater. Trans. JIM Vol.34 (1993), p.135.

Google Scholar

[12] J.B. Qiang, Y.M. Wang, L.J. Yuan, D.J. Li, C. Dong: Acta Metall. Sinica Vol.40 (2004), p.62.

Google Scholar

[13] C. Leyens, M. Peters, Titanium and Titanium alloys, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, 18.

Google Scholar

[14] B. Liu, Y.Wu, L. Wang: Journal of Non-Crystalline Solids Vol.352 (2006), p.3936.

Google Scholar

[15] Yu. V. Milman, D. V. Lotsko, and O. I. Sirko: Mat. Sci. Forum Vol. 331–337 (2000), p.1107.

Google Scholar

[16] N.K. Mukhopadhyay, G.C. Weatherly, J.D. Embury: Mater. Sci. Eng. A Vol.315 (2001), p.202.

Google Scholar

[17] U. Ponkratz, R. Nicula, A. Jianu, E. Burkel: Ferroelectrics Vol.250 (2000), p.269.

Google Scholar