[1]
M.M. Dewidar, H.C. Yoon, J.K. Lim, Met. Mater. 12 (2006) 193.
Google Scholar
[2]
Xin Y, "In vitro studies of magnesium alloys in simulated physiological environment",Acta Biomaterialia, (2010)
Google Scholar
[3]
Yeo heung Yun, "Revolutionizing biodegradable metals", Materials today J,2009,V12.10
Google Scholar
[4]
Frank Witte,"Degradable biomaterials based on magnesium corrosion",current opinion in solid state and material science12,2008,63-72
Google Scholar
[5]
Frank Witte,"Degradable biomaterials based on magnesium corrosion",current opinion in soid state and material science12,2008,63-72
Google Scholar
[6]
Zhang Shaoxiang,"Research on anMg-Zn as a degradable biomaterial",Ata Biomaterialia ,6,2010,626-640
Google Scholar
[7]
Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 1992;143:84–92.
DOI: 10.1016/s0022-3093(05)80556-3
Google Scholar
[8]
C.Q. Ning, Y. Zhou. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method, Biomaterials 23 (2002) 2909–2915
DOI: 10.1016/s0142-9612(01)00419-7
Google Scholar
[9]
Wen, CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scripta Materialia. 2001; 45(10):1147-1153.
DOI: 10.1016/s1359-6462(01)01132-0
Google Scholar
[10]
Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005; 26(30):6014-6023.
DOI: 10.1016/j.biomaterials.2005.03.019
Google Scholar
[11]
Vasconcellos LMR, Momose DR, Brentel AS, Oliveira MV, Carvalho YR, Cairo CAA. Surgical technique to place porous surface dental implants. Acta Microscopic. 2003; 12(suplC):
Google Scholar
[12]
Garcia Barriocanal J, Pérez P, Garcéz G, Adeva P. Microstructure and mechanical properties of Ni3Al base alloy reinforced with Cr particles produced by powder metallurgy. Intermetallics. 2006; 14:456-463.
DOI: 10.1016/j.intermet.2005.08.008
Google Scholar
[13]
Bram M, Stiller C, Buchkremer PH, Stöver D, Baur H. High-porosity titanium, stainless steel, and superflloy parts. Adv Eng Mater. 2000; 2:196-199.
DOI: 10.1002/(sici)1527-2648(200004)2:4<196::aid-adem196>3.0.co;2-k
Google Scholar
[14]
S. Takuji, K. Masayoshi, W. Takashi, Nippon Steel Tech. Rep. 46 (1990) 35.
Google Scholar
[15]
W.D. Brewer, R.K. Bird, T.A. Wallace, Mater. Sci. Eng. A 243 (1998) 299.
Google Scholar
[16]
I. Philippart, H.J. Rack, Mater. Sci. Eng. A 243 (1998) 196.
Google Scholar
[17]
T. Fujita, A. Agawa, C. Ouchi, H. Tajima, Mater. Sci. Eng., A 213 (1996) 148.
Google Scholar
[18]
T Saito, United States Patent, no. 6117204, 12 September 2000.
Google Scholar
[19]
H.P. Tang, Y. Liu, W.F. Wei, L.F. Chen, Chin. J. Nonferrous Met. 14(2004) 244.
Google Scholar
[20]
J. Koike, Y. Shimoyama, H. Fujii, K. Maruyama, Scripta Mater. 39 (1998) 1009.
Google Scholar
[21]
T. Saito, H. Takamiya, T. Furuta, Mater. Sci. Eng. A 243 (1998) 273.
Google Scholar
[22]
W.F. Wei, Y. Liu, H.P. Tang, B.Y. Huang, Powder Metall. 46 (2003) 246.
Google Scholar
[23]
J.L. Murray, Monograph Series on Alloy Phase Diagrams: Phase Diagrams Of Binary Titanium Alloys, ASM International, Metal Park, Ohio, 1987.
Google Scholar
[24]
Y. Liu, W.F. Wei, K.C. Zhou, B.Y. Huang, J. Central South Univ. Technol. 10 (2003) 81.
Google Scholar
[25]
Y. Liu, B.Y. Huang, Y.H. He, K.C. Zhou, Trans. Nonferrous Met. Soc. China 10 (2000) 453.
Google Scholar