Comparative Analysis on Chemical Composition and Charcoal Characterization of Two Miscanthus Species

Article Preview

Abstract:

Miscanthus is a highly productive, rhizomatous, C4 perennial grass that should be considered as an excellent active carbon precursor. This paper compares the charcoal characterization and chemical composition between M. sinensis and M. floridulus. Species differed in water content, hot water extract, 1% NaOH extract, organic solvent extract, cellulose, lignin and ash. Carbonization temperatures have effects on charcoal yields of Miscanthus, which ranged from 23.5% to 48.0% for M. sinensis and 11.3% to 37.2% for M. floridulus. Water content, charcoal density, pH value, and specific surface area of charcoal characterization varied between two species of Miscanthus. The specific surface area increased with the increase of carbonization temperature. The highest specific surface area of M. sinensis and M. floridulus was 351.74 m2 g−1 and 352.74 m2 g−1, respectively, when the carbonization temperature was 800°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1265-1272

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pulido-Novicio, T. Hata, Y. Kurimoto, S. Doi, S. Ishihara, Y. Imamura, Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process, J. Wood Sci. 47 (2001) 48-57.

DOI: 10.1007/bf00776645

Google Scholar

[2] P. Girods, A. Dufour, V. Fierro, Y. Rogaume, C. Rogaume, A. Zoulalian, A. Celzard, Activated carbons prepared from wood particleboard wastes: Characterisation and phenol adsorption capacities, J. Hazard. Mater. 166 (2009) 491-501.

DOI: 10.1016/j.jhazmat.2008.11.047

Google Scholar

[3] Y. Bao, Z. Wu, S. Wang, Z. Zhong, The comparative study on pore structure of activated carbon from different bamboo species, J. Bamboo Res. 29(4) (2010) 32-35.

Google Scholar

[4] C. Yan, K. Li, L. Jia, Research on the preparation of high specific surface area coal-based activated carbon, SCI-Tech Inf. Dev. Econ. 20 (31) (2010) 162-164.

Google Scholar

[5] L.G. Wang, G.B. Yan, Adsorptive removal of direct yellow 161dye from aqueous solution using bamboo charcoals activated with different chemicals, Desalin. 274 (2011) 81-90.

DOI: 10.1016/j.desal.2011.01.082

Google Scholar

[6] L.H. Huang, Y.Y. Sun, W.L. Wang, Q.Y. Yue, T. Yang, Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC), Chem. Eng. J. 171 (2011) 1446-1453.

DOI: 10.1016/j.cej.2011.05.041

Google Scholar

[7] W.B. Zhang, W.G. Zhang, W.Z. Li, Preparation and property study of bamboo powder activated charcoal, J. Bamboo Res. 29 (2010) 36-41.

Google Scholar

[8] M. Matamura, T. Yukimura, Fundamental studies on artificial propagation by seeding useful wild grasses in Japan. VI. Germination behaviour of three native species of genus Miscanthus, Res. Bull. Fac. Agr. Gifu U. 38 (1995) 339-49.

Google Scholar

[9] J.C. Clifton-Brown, P.F. Stampfl, M.B. Jones, Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Global Change Biol. 10 (2004) 509-518.

DOI: 10.1111/j.1529-8817.2003.00749.x

Google Scholar

[10] A. Hastings, J.C. Clifton-Brown, M. Wattenbach, P. Stampfl, C.P. Mitchell, P. Smith, Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions, Agron. Sustain. Dev. 28 (2008) 465-472.

DOI: 10.1051/agro:2008030

Google Scholar

[11] D.G. Christian, A.B. Riche, N.E. Yates, Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests, Ind. Crop. Prod. 28 (2008) 320-327.

DOI: 10.1016/j.indcrop.2008.02.009

Google Scholar

[12] I. Lewandowski, Miscanthus—a multifunctional biomass crop for the future, In: S. Jezowski, K.M. Wojciechowicz, E. Zenkteler (Eds.), Alternative plants for sustainable agriculture, Institute of Plant Genetics PAS, Poznan, 2006, pp.83-90.

Google Scholar

[13] P. Visser, V. Pignatelli, Utilisation of Miscanthus, In: M.B. Jones, M. Walsh (Eds.), Miscanthus: for energy and fibre, James & James (Science Publishers), 2001, pp.109-154

Google Scholar

[14] A. Monti, N.D. Virgilio, G. Venturi, Mineral composition and ash content of six major energy crops, Biomass Bioenerg. 32 (2008) 216-223.

DOI: 10.1016/j.biombioe.2007.09.012

Google Scholar

[15] D.M. Updegraff, Semimicro determination of cellulose in biological materials, Anal. Biochem. 32 (1969) 420–424.

Google Scholar

[16] TAPPI 211 om-93, Ash in wood, pulp, paper and paperboard: combustion at 525°C, Committee of the Process and Product Quality Division, TAPPI, Atlanta, GA, USA, 1996.

Google Scholar

[17] S.J. Gregg, K.C. Sing, Adsorption, surface area and porosity, second ed., Academic, London, 1982, pp.41-110.

Google Scholar

[18] SAS Institute Inc., SAS/STAT User's guide, Version 8. SAS Institute Inc., Cary, NC, 1999.

Google Scholar

[19] K. Fang, Q.P. Yang, J.M. Shi, L.S. Wu, Q.R. Guo, J. LI, G.Y. Yang, A Primary Study on Chemical Characteristics' Variation of Moso Bamboo Wood from Subtropical Zone, Acta Agr. U. Jiangxiensis. 31(4) (2009) 679-684.

Google Scholar

[20] C. Ververis, K. Georghiou, N. Christodoulakis, P. Santas, R. Santas, Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production, Ind. Crop. prod. 19 (2004) 245-254.

DOI: 10.1016/j.indcrop.2003.10.006

Google Scholar

[21] C.T. Hong, J. Fang, A.W. Jin, J.G. Cai, H.P. Guo, J.X. Ren, Q.J. Shao, B.S. Zheng, Comparative growth, biomass production and fuel properties among different perennial plants, Bamboo and Miscanthus, Bot. Rev. 77 (2011) 197-207.

DOI: 10.1007/s12229-011-9076-x

Google Scholar

[22] H.J. Nieschlag, G.H. Nelson, J.A. Wolff, R.E. Perdue, A search for new fiber crops, Tappi 43(30) (1960) 193.

Google Scholar

[23] C.E. Byrne, D.C. Nagle, Carbonization of wood for advanced materials applications, Carbon 35 (1997) 259-266.

DOI: 10.1016/s0008-6223(96)00136-4

Google Scholar

[24] W.B. Zhang, J.H. Fu, G.Y. Zhou, W.Z. Li, Research on the bamboo charcoal properties of two sympodial bamboo species in Guangdong, J. Bamboo Res. 27 (2008) 46-49.

Google Scholar

[25] H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon 32 (1994) 759-769.

DOI: 10.1016/0008-6223(94)90031-0

Google Scholar

[26] D.M. Mackay, P.V. Roberts, The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars, Carbon 20 (1982) 95-104.

DOI: 10.1016/0008-6223(82)90413-4

Google Scholar

[27] A.C. Lua, J. Guo, Preparation and characterization of chars from oil palm waste, Carbon 36 (1998) 1663-1670.

DOI: 10.1016/s0008-6223(98)00161-4

Google Scholar