Preparation of Salt-Resistance Superabsobent Microspheres by Inverse Suspension Polymerization

Article Preview

Abstract:

Novel salt-resistance superabsobent microspheres based on acrylamide (AM), 2-acrylamido-2-methylpropane sulphonic acid (AMPS) by inverse suspension copolymerization using ammonium persulfate (APS) as the initiator and N,N-methylene bisacrylamide (MBA) as the crosslinking agent and surfactant PVA as disperse agent are prepared. The experimental results of salt-resistance superabsobent microspheres show the salt absorbency decreased with the increase of salt concentration; The maximum salt absorbency is 132g/g within 75min in 0.9% NaCl solution and the effect of calcium ion on salt absorbency is much greater than that of sodium ion. FTIR indicates the structure of the acrylamide and 2-acrylamido-2- methylpropane sulphonic acid copolymer. SEM indicates that the number of the micropores largely decreased with the water/oil ratio increasing from 4% to 10%. Elemental analysis indicate that the measured values of carbon, sulfur, nitrogen, hydrogen four elements is very close to theoretical value.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1273-1278

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tao Wan, Lan Wang and Jie Yao,Saline solution absorbency and structure study of poly (AA-AM) water superabsorbent by inverse microemulsion polymerization, Polymer Bulletin 60 (2008) 431-440.

DOI: 10.1007/s00289-007-0875-5

Google Scholar

[2] Yuhong Zhang, Leming Wang and Xiaohong Li, Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid, J. Polym. Res. 18 (2010) 157-161.

DOI: 10.1007/s10965-010-9402-8

Google Scholar

[3] Ji Zhang, Kun Yuan, Yun-Pu Wang, Sheng-Jiu Gu and Sheng-tang Zhang, Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization, Materials Letters 61 (2007) 316-320.

DOI: 10.1016/j.matlet.2006.04.055

Google Scholar

[4] Sevil SY, Dilek K, Muammer E,Mustafa Ö and Rıza A, Synthesis of a novel crosslinked superabsorbent copolymer with diazacyclooctadecane crown ether and its sorption capability, European Polymer Journal 43 (2007) 1923-1932.

DOI: 10.1016/j.eurpolymj.2007.02.012

Google Scholar

[5] Amos Nussinovitch, Beads and Special Applications of Polymers for Agricultural Uses, Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications, 2010 Pages 231-253.

DOI: 10.1007/978-1-4419-6618-6_9

Google Scholar

[6] Hossein Hosseinzadeh, Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel, Journal of Chemical Sciences, 122(2010) 651-659.

DOI: 10.1007/s12039-010-0100-1

Google Scholar

[7] Raju K.M. and Raju M.P., Synthesis and Swelling Properties of Superabsorbent Copolymers, Advances in Polymer Technology 20 (2001) 146-154.

DOI: 10.1002/adv.1012

Google Scholar

[8] An Li and Aiqin Wang, Synthesis and properties of clay-based superabsorbent composite, European Polymer Journal 41(2005) 1630-1637.

DOI: 10.1016/j.eurpolymj.2005.01.028

Google Scholar

[9] Zhenbin Chen, Mingzhu Liu and Songmei Ma, Synthesis and modification of salt-resistant superabsorbent polymers, Reactive & Functional Polymers 62(2005) 85-92.

DOI: 10.1016/j.reactfunctpolym.2004.09.003

Google Scholar

[10] Lung-Pin Chen, Kuo-Liang Ying and Kung-Chung Hsu, Amphibious Water-Soluble Copolymer. I. Its Synthesis and Dispersing Ability on Barium Titanate, J. Appl. Polym. Sci. 92(2004) 2232-2239.

DOI: 10.1002/app.13696

Google Scholar

[11] THILINI K. MUDIYANSELAGE and DOUGLAS C. NECKERS, Highly Absorbing Superabsorbent Polymer, J. Polym. Sci. Part A: Polym. Chem. 46 (2008) 1357-1364.

DOI: 10.1002/pola.22476

Google Scholar

[12] Ali Pourjavadi, Mehran Kurdtabar, Gholam R. Mahdavinia and Hossein Hosseinzadeh, Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel, Polymer Bulletin, 57(2006) 813-824.

DOI: 10.1007/s00289-006-0649-5

Google Scholar

[13] Wen-Fu Lee and Yung-Chu Chen, Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents, Eur. Polym. J. 41 (2005) 1605-1612.

DOI: 10.1016/j.eurpolymj.2005.02.011

Google Scholar

[14] Omidian H., Hashemi S.A., Sammes P.G. and Meldrum I., Modified acrylic-based superabsorbent polymers (dependence on particle size and salinity), Polymer 40(1999) 1753-1761.

DOI: 10.1016/s0032-3861(98)00394-2

Google Scholar

[15] Doo-Won Lim, Kyong-Geun Song, Kee-Jong Yoon and Sohk-Won Ko, Synthesis of acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization, European Polymer Journal 38(2002) 579-586.

DOI: 10.1016/s0014-3057(01)00164-1

Google Scholar

[16] Reena Singhal, Rajiv Singh Tomar and A. K. Nagpal, Effect of cross-linker and initiator concentration on the swelling behaviour and network parameters of superabsorbent hydrogels based on acrylamide and acrylic acid, International Journal of Plastics Technology 13(2009) 22-37.

DOI: 10.1007/s12588-009-0004-4

Google Scholar

[17] Ming Zhou and Jinzhou Zhao, Synthesis condition of P(AM-co-AMPS) hydrogel microparticles by inverse suspension polymerization, Modern Chemical Industry(Chinese) 29 (2009)46-48.

Google Scholar

[18] Lutfor M.R., Sidik S., Wan Yunus W.M.Z., Ab Rahman M.Z. Mansoor A. and Jelas H., Preparation and swelling of polymeric absorbent containing hydroxamic acid group from polymer grafted sago starch, Carbohydr. Polym. 45(2001) 95-100.

DOI: 10.1016/s0144-8617(00)00240-x

Google Scholar

[19] Esmaiel Jabbari and Samyra Nozari, Swelling behavior of acrylic acid hydrogels prepared byγ-radiation crosslinking of polyacrylic acid in aqueous solution, Eur. Polym. J. 36(2000) 2685-2692.

DOI: 10.1016/s0014-3057(00)00044-6

Google Scholar