Synthesis and Photoluminescence Property of Tris(8-hydroxyquinoline) Bismuth Rod-Like Structures at Room Temperature

Article Preview

Abstract:

Tris(8-hydroxyquinoline) bismuth complex has been synthesized with a facile method in a mixed solvent system containing bismuth nitrate and 8-hydroxyquinolineat at room temperature. The molecular formula of the products is speculated by the C, H and N element analysis and thermal gravimetric analysis, and FTIR was also utilized to measure the structure, which further confirms the molecular formula of the products. The observation of FESEM and TEM shows that the morphology of tris(8-hydroxyquinoline) bismuth complexes is rod-like structure. The results of photoluminescence emission indicate that inorganic element plays key roles in the luminescence property. According to the results, we found that the photoluminescence of tris-(8-hydroxyquinoline) bismuth is stronger than that of 8-hydroxyquinoline.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1382-1386

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.Y. Wang, P. Li, and Y.D. Li. Adv. Mater. Vol. 19(2007), p.3304.

Google Scholar

[2] X. Liang, X. Wang, J. Zhuang, Q. Peng, Y.D. Li. Adv. Funct. Mater. Vol. 17(2007), p.2757.

Google Scholar

[3] X.F. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber. Nature Vol. 409(2001), p.66.

Google Scholar

[4] C.Z. Wu, Z.P. Hu, C.L. Wang, H. Sheng, J.L. Yang, Y. Xie. Appl. Phys. Lett. Vol. 91(2007) p.143104.

Google Scholar

[5] Z.W. Pan, Z.R. Dai, Z.L. Wang. Science vol.291(2001), p.1947.

Google Scholar

[6] Y.F. Ma, J.M. Zhang, G.J. Zhang, H.X. He. J. Am. Chem. Soc. vol.126(2004), p.7097.

Google Scholar

[7] H.B. Fu, J.N. Yao. J. Am. Chem. Soc. 123(2001),p.1434.

Google Scholar

[8] B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park. J. Am. Chem. Soc. Vol.124(2002) 14410.

Google Scholar

[9] F. Debuigne, L. Jeunieau, M. Wiame, J.B. Nagy. Langmuir Vol.16(2000), p.7605.

Google Scholar

[10] J. Jang, J.H. Oh. Adv. Mater. Vol.15(2003), p.977.

Google Scholar

[11] Y.L. Liu, H.X. Li, D.Y. Tu, Z.Y. Ji, C.S. Wang, Q.X. Tang, M. Liu, W.P. Hu, Y.Q. Liu, D.B. Zhu. J. Am. Chem. Soc. Vol.128(2006), p.12917.

Google Scholar

[12] D.B. Xiao, X. Lu, W.S. Yang, H.B. Fu, Z.G. Shuai, Y. Fang, J.N. Yao. J. Am. Chem. Soc. Vol.125 (2003), p.6740.

Google Scholar

[13] Z.Y. Tian, Y. Chen, W.S. Yang, J.N. Yao, L.Y. Zhu, Z.G. Shuai. Angew. Chem. Int. Ed. Vol.43(2004), p.4060.

Google Scholar

[14] C.W. Tang, S.A. Vanslyke. Appl. Phys. Lett. Vol.51(1987), p.913.

Google Scholar

[15] Y.S. Zhao, C.A. Di, W.S. Yang, G. Yu, Y.Q. Liu, J.N. Yao. Adv. Funct. Mater. Vol.16(2006), p.1985.

Google Scholar

[16] M. Muccini, M.A. Loi, K. Kenevey, R. Zamboni, N. Mascioccini, A. Sironi. Adv. Mater. Vol.16(2004), p.861.

Google Scholar

[17] J.J. Chiu, C.C. Kei, T.P. Perng, W.S. Wang. Adv. Mater. Vol.15(2003), p.1361.

Google Scholar

[18] H.C. Pan, F.P. Liang, C.J. Mao, J.J. Zhu, H.Y. Chen. J. Phys. Chem. B Vol.111(2007), p.5767.

Google Scholar

[19] W. Chen, Q. Peng, Y.D. Li. Cryst. Growth Design. Vol.8(2008), p.564.

Google Scholar

[20] B.S. Xu, Y.Y. Hao, H. Wang, H.F. Zhou, X.G. Liu, M.W. Chen. Solid State Commun. Vol. 136(2005), p.318.

Google Scholar

[21] G. De Armas, M. Miro, A. Cladera, J.M. Estela, V. Cerda. Anal. Chem. Acta. Vol.455(2002), p.149.

Google Scholar

[22] A.V. Bordunov, J.S. Bradshaw, X.X. Zhang, N.K. Dalley, X. Kou, R.M. Izatt. Inorg. Chem. Vol.35(1996), p.7229.

Google Scholar

[23] S.N. Wang. Coord. Chem. Rev. Vol.215(2001), p.79.

Google Scholar

[24] B.D. Muegge, S. Brooks, M.M. Richter. Anal. Chem. Vol.75(2003), p.1102.

Google Scholar

[25] D.K. Ma, J.H. Zhang, X.K. Hu, H.Y. Zhou , Y.T. Qian. Chem. Lett. Vol.36(2007), p.630.

Google Scholar