Immobilization of Horseradish Peroxidase on TiO2 Nanotube Arrays via Seeded-Growth Synthesis

Article Preview

Abstract:

Horseradish peroxidase (HRP) was successfully immobilized on vertically oriented TiO2 nanotube arrays (NTAs), which was prepared by seeded-growth mechanism. The nanotubular structure of TiO2 was characterized by scanning electron microscope (SEM). After encapsulated HRP on TiO2 nanotube arrays, the direct electron transfer of HRP was observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

491-494

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.L. Wang: Characterization of Nanophase Materials (Wiley-VCH, Weinheim 2000).

Google Scholar

[2] S. Yang, P. Sheng: Physics and Chemistry of Nanostructured Materials (Taylor and Francis, London 2000)

Google Scholar

[3] J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14,1445. (2002)

Google Scholar

[4] S. Iijima, Nature, 56,354. (1991)

Google Scholar

[5] J.J. Shyue, R.E. Cochran, N.P. Padture. J. Mater Res. 21,2894. (2006)

Google Scholar

[6] W.S. Yun, J.J. Urban, Q. Gu, H.Park, Nano Lett. 2,447. (2002)

Google Scholar

[7] Z.L. Wang, J. Song, Science 312,242. (2006).

Google Scholar

[8] Y. Xia, P.Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates et al., Adv Mater, 5,353. (2003)

Google Scholar

[9] A. Kolmakov, M. Moskovits, Ann Rev Mater Sci, 34,151. (2004)

Google Scholar

[10] C. Terrier, M. Abid, C. Arm, S. Serrano-Guisan, L. Gravier, J.P. Ansermet, J. Appl. Phys. 98, 086101. (2005)

Google Scholar

[11] D. Li, Y.N. Xia, Nano Lett. 3,555. (2003)

Google Scholar

[12] H.D. Jang, S.K. Kim, S.J. Kim, J. Nanopart. Res. 3,141. (2001)

Google Scholar

[13] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Sens. Actuators, B. 93,338. (2003)

Google Scholar

[14] O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N.A. Mukherjee, J. Nanosci. Nanotechnol. 4,733. (2004)

Google Scholar

[15] R. Rodriguez, K. Kim, J.L. Ong, J. Biomed. Mater. Res. A. 65,352. (2003)

Google Scholar

[16] O. Zinger, P.F. Chauvy, D. Landolt, J. Electrochem. Soc. B.150,495. (2003)

Google Scholar

[17] S. Hrapovic, B.L. Luan, M. D'Amours, G. Vatankhah, G. Jerkiewicz, Langmuir 17,3051. (2001)

Google Scholar

[18] J.W. Schultze, M.M. Lohrengel, Electrochim. Acta 45,2499. (2000)

Google Scholar

[19] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15,624. (2003)

Google Scholar

[20] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14,3370. (2004)

Google Scholar

[21] P. Hoyer, Langmuir 12,1411. (1996)

Google Scholar

[22] H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem. C. 111, 7235. (2007)

Google Scholar

[23] X.H. Li, W.M .Liu, H.L. Li, Appl. Phys. A 80,317. (2005)

Google Scholar

[24] Z.R. Tian, J.A Voigt, J. Liu, B. Mckenzie, H.F. Xu, J. Am. Chem. Soc. 125,12384.(2003)

Google Scholar

[25] Y.B. Xie, L.M. Zhou, H.T. Huang, Biosens. Bioelectron. 22, 2812. (2007)

Google Scholar