Luminescence Properties of ZnS:Cu,Tm Semiconductor Nanocrystals Synthesize by a Hydrothermal Process

Article Preview

Abstract:

ZnS:Cu,Tm nanocrystal with 15nm cubic structures have been synthesized by hydrothermal approach at 200°C. The photoluminescence (PL) properties and the effect of hydrothermal treatment time on the structure, morphology and PL spectra of ZnS:Cu,Tm samples have been studied. The as-obtained samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectra.The result indicated that the PL emission spectrum of codoped with Cu and Tm sample compares with undoped ZnS and doped with Cu alone samples has a significant changes, while the PL emission peak has red shift and PL emission intensity increased. The samples size and crystallization are increase with extending of the treatment time. However, when the hydrothermal treatment time is too long(>12h), the PL emission intensity of sample instead of decreased. Demonstrated changes in surface state of nanomaterials have a greater impact on its luminescence properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

499-503

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.Manzoor, S. R.Vadera, N.Kumar and T.R.N. Kutty: Mater Chem Phys Vol. 82 (2003), p.718

Google Scholar

[2] L.Qi, B.I. Lee, J.M. Kim, J.E. Jang and J.Y. Choe: J. Lumin Vol.104 (2003) , p.261

Google Scholar

[3] W.Q. Yang, L.Dai L.P. You and G.G. Qin:Phys Lett Vol. A 372(2008) , p.4831

Google Scholar

[4] P.Mukherjee, C.M. Shade, A.M. Yingling, D.N. Lamont, D.H. Waldeck and S.Petoud: J.Phys.Chem. Vol.A115 (2011) p.4031

Google Scholar

[5] Jr.M.Bruchez, M.Moronne, P.Gin, Sh.Weiss and A.P. Alivisatos: Science Vol.281 (1998) , p.(2013)

DOI: 10.1126/science.281.5385.2013

Google Scholar

[6] S.Kar and S.Biswas:J.Phys.Chem Vol.C 112 (2008), p.11144

Google Scholar

[7] J.H. Park, S.H. Lee, J.S. Kim, A. K.Kwon, H. L.Park and S. D.Han: J. Lumin Vol.126 (2007), p.566

Google Scholar

[8] Q.Sun, G.Subramanyam, L.Dai, M.Check, A.Campbell, R.Naik, J.Grote and Y.Wang: ACS Nano Vol. 3 (2009), p.737

Google Scholar

[9] P.V. Kamat: J.Phys.Chem Vol.C112 (2008), p.18737

Google Scholar

[10] L.P. Wang, X.D.Xu and X.Yuan: J. Lumin Vol.130 (2010), p.137

Google Scholar

[11] H.Hu and W.H. Zhang: Opt Mater Vol.28 (2006), p.536

Google Scholar

[12] M.Xin and W.H. Cao: Chem.J.Chinese Universities(In Chinese) Vol. 31 (2010), p.644

Google Scholar

[13] M.Xin and W.H. Cao: Spectroscopy and Spectral Analysis (In Chinese) Vol. 29 (2009),p.2272

Google Scholar

[14] S.Kar and S.Chaudhuri: J.Phys.Chem Vol. B109 (2005), p.3298

Google Scholar

[15] A.A. Bol, J.Ferwerda, J.A. Bergwerff and A.Meijerink: J Lumin Vol. 99 (2002), p.325

Google Scholar

[16] X.B. Zhang, H.W. Song, L.X Yu.T.Wang, X.G. Ren, X.G. Kong, Y.H. Xie and X.J. Wang: J. Lumin Vol. 118 (2006), p.251

Google Scholar

[17] W.W.So, J.S. Jang, Y.W. Rhee, K.J. Kim and S.J. Moon: J Coll Interf Sci Vol. 237 (2001), p.136

Google Scholar

[18] R.Gärd, Z.X. Sun and W.Forsling: J. Coll. Interf. Sci Vol.169 (1995),p.393

Google Scholar