[1]
Merrit HE. Theory of self excited machine tool chatter: Contribution to machine-tool chatter research-1.Transactions of ASME Journal of Engineering for Industry 1965, B87(4):447_54.
DOI: 10.1115/1.3670861
Google Scholar
[2]
Tobias SA, Fishwick W. The chatter of lathe tools under orthogonal cutting conditions. Transactions of American Society of Mechanical Engineers 1958; 80:1079.
DOI: 10.1115/1.4012609
Google Scholar
[3]
Tlusty J, Ismail F. Basic nonlinearity in machining chatter. C.I.R.P Annual 1981: 30(2):229_304.
Google Scholar
[4]
Deshpande N, Fofana S. Nonlinear regenerative chatter in turning. Journal of Robotics and Computer-Integrated Manufacture 2001, 17:107_12.
DOI: 10.1016/s0736-5845(00)00043-0
Google Scholar
[5]
Stepan G, Insperger T, Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting process. Journal of Bifurcation and Chaos 2005, 15(9):2783_98.
DOI: 10.1142/s0218127405013642
Google Scholar
[6]
Arnold RN. The mechanism of tool vibration in the cutting of steel. Proceeding, Institution of Mechanical Engineers 1946, 154:261.
Google Scholar
[7]
Nayfeh H, Mook D. Nonlinear oscillations. New York: Wiley Interscience; 1979.
Google Scholar
[8]
Moon FC, Kalmar-Nagy T. Nonlinear models for complex dynamics in cutting materials. Philosophical Transactions of the Royal Society of London Series A 2001, 1781:695_711.
DOI: 10.1098/rsta.2000.0751
Google Scholar
[9]
Szakovits RJ, D'Souza AF. Metal cutting dynamics with reference to primary chatter. ASME Journal of Engineering for Industry 1976, 98:258_64.
DOI: 10.1115/1.3438829
Google Scholar
[10]
Vogler M, Devor R, Kapoor S. Nonlinear influence of effective lead angle in turning process stability. Journal of Manufacturing Engineering and Science2002, 124:473.
DOI: 10.1115/1.1419200
Google Scholar
[11]
bjDoi S, Kato S. Chatter vibration of lathe tools. ASME Journal of Engineering for Industry 1956, 78:1127_34.
Google Scholar
[12]
Smith S, Delio T. Sensor-based chatter detection and avoidance by spindle speed selection. ASME Journal of Engineering for Industry 1992,114:486_92.
DOI: 10.1115/1.2897373
Google Scholar
[13]
Liao YS, Young YC. A new online spindle speed regulation strategy for chatter control. International Journal of Machine Tools & Manufacture 1996, 36(5): 651_60.
DOI: 10.1016/0890-6955(95)00076-3
Google Scholar
[14]
Mei C. Active regenerative chatter suppression during boring manufacturing process. Journal of Robotics and Computer-Integrated Manufacture 2005, 21: 153_8.
DOI: 10.1016/j.rcim.2004.07.011
Google Scholar
[15]
Moradi H, Bakhtiari Nejad F, Movahhedy MR. Tunable vibration absorber design to suppress vibrations: An application in boring manufacturing process. Journal of Sound and Vibration 2008, 318:93_108.
DOI: 10.1016/j.jsv.2008.04.001
Google Scholar
[16]
Pratt JR, Nayfeh AH. Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions. Philosophical Transaction of the Royal Society of London, Part A 2001, 359:759_92.
DOI: 10.1098/rsta.2000.0754
Google Scholar
[17]
Moradi H, Movahhedi MR, Vossoughi GR. control of machining chatter in the presence of tool wear and parametric uncertainties. Journal of Vibration and Control 2009 [in press].
DOI: 10.1177/1077546309104466
Google Scholar
[18]
Youngbin P, Tae-Yong K, Joongwon W, Dongwon S, Jongwon K. Sliding mode cutting force regulator for turning processes. International Journal of Machine Tools & Manufacture 1998, 38(8):911_30.
DOI: 10.1016/s0890-6955(97)00132-6
Google Scholar
[19]
Carrillo FJ, Rotella F, Zadshakoyan M. Delta approach adaptive implementation of a robust controller for a turning process. Proceedings of IEEE International Conference on Control Applications 1997, 97:460_2.
Google Scholar
[20]
Pan J, Su CY, Stepanenko Y. Modeling and robust adaptive control of metal cutting mechanical systems. Proceedings of American Control Conference AACC 2001, 2:1268_73.
DOI: 10.1109/acc.2001.945897
Google Scholar
[21]
Choudhury SK, Ramesh S. On-line tool wear sensing and compensation in turning. Journal of Materials Process Technology 1995, 49(3-4):247.
DOI: 10.1016/0924-0136(94)01350-a
Google Scholar
[22]
Youn JW, Yang MY. A study on the relationship between static/dynamic cutting force components and tool wear. Transactions of ASME Journal of Manufacture Science & ngineering 2001, 123(2):196.
DOI: 10.1115/1.1362321
Google Scholar
[23]
Chiou R, Liang SY. Chatter stability of a slender cutting tool in turning with tool wear effect. International Journal of Machine Tools & Manufacture 1998; 38(4):315_27.
DOI: 10.1016/s0890-6955(97)00079-5
Google Scholar
[24]
Marui E, Ema S, Kato S. Chatter vibration of lathe tools. Part 2: On the mechanism of exciting energy supply. Transactions of ASME Journal of Engineering for Industry 1983; 105, 107.
DOI: 10.1115/1.3185867
Google Scholar
[25]
Shaw MC, Desalvo GJ. On the plastic flow beneath a blunt axis symmetric indenter. Transactions of ASME Journal of Engineering for Industry 1970, 480.
DOI: 10.1115/1.3427786
Google Scholar
[26]
Sisson TR, Kegg RL. An explanation of low speed chatter effects. Transactions of ASME Journal of Engineering for Industry 1969, 91(4):951.
DOI: 10.1115/1.3591778
Google Scholar
[27]
Altintas Y. Manufacturing automation. Cambridge University Press; 2000.
Google Scholar
[28]
Skogestad S, Postlethwaite I. Multivariable feedback control. New York: John Wiley and Sons; 2005.
Google Scholar
[29]
Doyle JC. Lecture notes on advances in multivariable control. ONR/Honeywell Workshop, Minneapolis, USA, 1984.
Google Scholar
[30]
Slotine JJ, Li W. Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall; 1991.
Google Scholar
[31]
Wang,Li-Xin., 1997, A Course In Fuzzy Systems And Control , Prentice Hall International ,Inc.
Google Scholar