Preparation and Characterization of Multiwalled Carbon Nanotubes Deposited by Europium Hydroxide

Article Preview

Abstract:

In this paper, europium hydroxide (Eu(OH)3) was introduced onto multiwall carbon nanotubes (MWCNTs) by the MWCNTs and europium nitrate (Eu(NO3)3•6H2O) on a mild conditions in the alkalescence solution. The influence of the different pH value on the product was analyzed. Characterizations of the products were performed using raman spectroscopy, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high resolution thermal field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). Those results indicated that oxygen-containing groups such as -OH, -C=O, and -COOH generated on the surface of the MWCNTs treated with nitric acid. Those functional groups can attract Eu, and provide the position to Eu(OH)3. When the pH value situation of the reaction is 7-8, the MWCNTs deposited by Eu(OH)3 were obtained. Furthermore, there is the weak interaction between Eu and the functional groups of the MWCNTs. In addition, the integrity of the MWCNTs was not damaged during the whole preparation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

428-435

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bianco, K. Kostarelos, C.D. Partidos and M. Prato: Chem. Commun. Vol. 5 (2005), p.571

Google Scholar

[2] Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-at and K.L. Soh: Sensors and Actuators B Vol. 93 (2003), p.327

Google Scholar

[3] J.L. Xu, K.A. Khora, J.J. Sui and W.N. Chen: Materials Science and Engineering C Vol. 29 (2009), p.44

Google Scholar

[4] T. Yildirim and S. Ciraci: Phys. Rev. Lett. Vol. 94 (2005), p.175501

Google Scholar

[5] S. Iijima: Nature Vol. 354 (1991), p.56

Google Scholar

[6] Y. Li, T Erik. Thostenson and T.W Chou: Composites Science and Technology Vol. 68 (2008), p.1227

Google Scholar

[7] M. Moniruzzaman and K.I. Winey: Macromolecules Vol. 39 (2006), p.5194

Google Scholar

[8] H.B. Chu, L. Wei, R.L Cui, J.Y. Wang and Y. Li: Coordination Chemistry Reviews Vol. 254 (2010), p.1117

Google Scholar

[9] P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco and M. Prato: Chem. Soc. Rev. Vol. 38 (2009), p.2214

DOI: 10.1039/b518111a

Google Scholar

[10] S.C. Tsang, Y.K. Chen, P.J.F. Harris and M.L.H. Green: Nature Vol. 372 (1994), p.159

Google Scholar

[11] R.M. Lago, S.C. Tsang, K.L. Lu, Y.K. Chen and M.L.H. Green: J. Chem. Soc. Chem. Commun. Vol. 63 (1995), p.1355

Google Scholar

[12] H. Hiura, T.W. Ebbesen and K. Tanigaki: Adv Mater. Vol. 7 (1995), p.275

Google Scholar

[13] W.X. Sun, Z.P. Huang, L. Zhang and J. Zhu: Carbon Vol. 41 (2003), p.1685

Google Scholar

[14] J.Q. Wei, J.Ding, X.F. Zhang, D.H. Wu, Z.C. Wang, J.B. Luo and K.L Wang: Materials Letters Vol. 59 (2005), p.322

Google Scholar

[15] H.X. Wu, W.M. Cao, J. Wang, H. Yang and S.P. Yang: Nanotechnology Vol. 19 (2008), p.345701

Google Scholar

[16] K. Masumoto, A. Semba, C. Kimura, T. Taniguchi, K. Watanabe, T. Sakata, and H. Aoki: Jpn. J. Appl. Phys. Vol. 50 (2011), p. 04DH01

DOI: 10.1143/jjap.50.04dh01

Google Scholar

[17] P. Marecot, L. Pirault, G. Mabilon, M. Prigent and J. Barbier: Applied Catalysis. B: Environmental Vol. 5 (1994), p.57

Google Scholar

[18] Sanyal, C. Antoniak and T. Burkert: PRL Vol. 104 (2010), p.156402

Google Scholar

[19] Y. Ma, L. Kuang and X. He: Chemosphere Vol. 78 (2010), p.273

Google Scholar

[20] Z.M. Liu, J.L. Zhang, B.X. Han, J.M. Du, T.C. Mu, Y. Wang and Z.Y. Sun: Microporous Mesoporous Mater. Vol. 81 (2005), p.169

Google Scholar

[21] N. Vu, T.K. Anh, G.C. Yi and W. Strek: J. Lumin. Vol. 122 (2007), p.776

Google Scholar

[22] G. Accorsi, N. Armaroli, A. Parisini, M. Meneghetti, R. Marega, M. Prato and D. Bonifazi: Adv. Funct. Mater. Vol. 17 (2007), p.2975

DOI: 10.1002/adfm.200600696

Google Scholar

[23] L. Fu, Z.M. Liu, Y.Q. Liu, B.X. Han, J.Q. Wang, P.A. Hu, L.C. Cao and D.B. Zhu: Advanced Materials Vol. 16 (2004), p.350

Google Scholar

[24] M. Pumera, M. Cabala, K. Veltruská , I. Ichinose and J. Tang: Chem. Mater. Vol. 19 (2007), p.6513

Google Scholar

[25] G.X. Chen, H.S. Kim, B.H. Park and J.S. Yoon: Journal of Physical Chemistry B Vol. 109 (2005), p.22237

Google Scholar

[26] H. Zhang, M. A. Kandadai, J. Cech, S. Roth and S.A. Curran: Journal of Physical Chemistry B Vol. 110 (2006), p.12910

Google Scholar

[27] P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Biancoa and M. Prato: Chem. Soc. Rev. Vol. 38 (2009), p.2214

Google Scholar

[28] M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J.M. Benoit, J. Schreiber and O. Chauvet: Chem. Commun. 37 (2001), p.1450

Google Scholar

[29] R.T.C. Rau and W.J. Glover: J. Am. Ceram. Soc. Vol. 47 (1964), p.382

Google Scholar

[30] Y. Zeng, Z. Ying, J.H. Du, and H.M. Cheng: J. Phys. Chem. C Vol. 111 (2007), p.13945

Google Scholar

[31] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, and R. H. Friend: J. Phys. Chem. B Vol. 103 (1999), p.8116

DOI: 10.1021/jp991659y

Google Scholar