Molecular Dynamics Simulation of Au-TiO2 Catalysts: Deposition of Gold Nanoclusters on Rutile (110) Surface

Article Preview

Abstract:

In this work, molecular dynamics simulation was used to investigate the deposition process of a gold nanocluster on rutile TiO2(110) surface. The effects of surface defects (i.e., point, step, and groove) were examined in terms of interaction energy, morphology and structure. It was found that the gold nanocluster can be strongly attracted to rutile TiO2(110) surface. Moreover, a higher degree of defect results in a stronger attractive interaction between gold nanocluster and TiO2(110) surface. The simulated results also indicated that the stability of gold nanoclusters can be effectively controlled by adding citrate ions, which could lead to a high catalytic activity of gold/metal oxide catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

870-875

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. S. Chen, and D. W. Goodman, Catal. Today 111, 22 (2006).

Google Scholar

[2] S. Lee, C. Y. Fan, T. P. Wu, and S. L. Anderson, J. Chem. Phys. 123, 124710 (2005).

Google Scholar

[3] G. C. Bond, and D. T. Thompson, Catal. Rev. - Sci. Eng. 41, 319 (1999).

Google Scholar

[4] T. V. Choudhary, and D. W. Goodman, Appl. Catal., A 291, 32 (2005).

Google Scholar

[5] R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H. Freund, Gold Bulletin 37, 72 (2004).

Google Scholar

[6] C. Duriez, C. Chapon, C. R. Henry, and J. M. Rickard, Surf. Sci. 230, 123 (1990).

Google Scholar

[7] J. M. Cowley, and K. D. Neumann, Surf. Sci. 145, 301 (1984).

Google Scholar

[8] C. R. Henry, C. Chapon, C. Duriez, and S. Giorgio, Surf. Sci. 253, 177 (1991).

Google Scholar

[9] J. V. Lauritsen et al., Nanotechnology 17, 3436 (2006).

Google Scholar

[10] N. Lopez, and J. K. Norskov, Surf. Sci. 515, 175 (2002).

Google Scholar

[11] J. A. Rodriguez, G. Liu, T. Jirsak, J. Hrbek, Z. P. Chang, J. Dvorak, and A. Maiti, J. Am. Chem. Soc. 124, 5242 (2002).

Google Scholar

[12] Q. H. Zeng, K. Wong, X. C. Jiang, and A. B. Yu, Appl. Phys. Lett. 92, 103109 (2008).

Google Scholar

[13] K. Wong, Q. Zeng, and A. Yu, Chem. Eng. J. 155, 824 (2009).

Google Scholar

[14] R. Kydd, W. Y. Teoh, K. Wong, Y. Wang, J. Scott, Q. H. Zeng, A. B. Yu, J. Zou, and R. Amal, Adv. Funct. Mater. 19, 369 (2009).

DOI: 10.1002/adfm.200801211

Google Scholar

[15] (Accelrys Inc., 2005).

Google Scholar

[16] J. H. Shim, S. C. Lee, B. J. Lee, J. Y. Suh, and Y. W. Cho, J. Cryst. Growth 250, 558 (2003).

Google Scholar

[17] S. C. Lee, N. M. Hwang, B. D. Yu, and D. Y. Kim, J. Cryst. Growth 223, 311 (2001).

Google Scholar

[18] E. Wahlstrom, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C. Africh, E. Laegsgaard, J. K. Norskov, and F. Besenbacher, Phys. Rev. Lett. 90, 026101 (2003).

Google Scholar

[19] L. Zhang, R. Persaud, and T. E. Madey, Phys. Rev. B 56, 10549 (1997).

Google Scholar

[20] A. Locatelli, T. Pabisiak, A. Pavlovska, T. O. Mentes, L. Aballe, A. Kiejna, and E. Bauer, J. Phys.: Condens. Matter 19 (2007).

DOI: 10.1088/0953-8984/19/8/082202

Google Scholar

[21] Y. Wang, and G. S. Hwang, Surf. Sci. 542, 72 (2003).

Google Scholar

[22] M. Haruta, J. New Mater. Electrochem. Syst. 7, 163 (2004).

Google Scholar