Enhancing the Sinterability of Chemically-Derived Tl1212 Superconducting Powders Using Nano-Sized MgO as Sintering Aid

Article Preview

Abstract:

The superconducting Tl0.8Bi0.2Sr2Ca0.8Y0.2Cu2O7 powder prepared from chemical route was mixed with varying amounts of nano-sized MgO powders (x=0 to 0.50 wt. %) to form bulk superconducting composites. XRD results show that the addition of 0.15 wt.% nano-MgO is accompanied by an increase in 1212-phase and the disappearance of SrCO3 impurity. SEM investigations revealed more regular-shaped and smaller grains microstructure for MgO added samples in contrast to MgO-free sample which revealed irregular shaped grains. EDS showed homogenous distribution of Mg for all MgO-added samples with the exception of x=0.50 where agglomeration of MgO particles were observed. However, MgO added samples exhibit lower zero-resistance critical temperature, Tc zero than the MgO-free sample.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

914-917

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.H. Chen, C.Y. Shei, S.R. Sheen and C.T. Chang: Japanese J. of Applied Physics Vol. 30 (1991), pp.1198-1203

Google Scholar

[2] K. Bernhard and G. Gritzner: Physica C Vol. 196 (1992), pp.259-263

Google Scholar

[3] F. Md. Salleh, A.K. Yahya, H. Imad and M.H. Jumali: Physica C Vol. 425-431 (2005), p.319

Google Scholar

[4] R. Abd. Shukor: J. Mater. Sc. Lett. Vol.12 (1993), p.1428

Google Scholar

[5] Q. Chen, M. Fang, Z. Jiao, Q. Zhang, H.H. Wen and Z.X. Zhao: Physica C Vol. 277 (1997), p.113

Google Scholar

[6] P.D. Yang and C.M. Lieber: Science Vol. 273(27) (1996), p.1836

Google Scholar

[7] X. Wan, Y. Sun, L. Jiang, K. Wang and J. Du: Supercond. Sci. Technol. Vol. 11 (1998), p.1079

Google Scholar

[8] K. Iida, N. H. Babu, E. S. Reddy, Y-H. Shi and D. A. Cardwell: Supercond. Sci. Technol. Vol. 18 (2005), pp.249-254.

Google Scholar

[9] F. R. Sale: Journal of Thermal Analysis Vol. 42 (1994), pp.793-810.

Google Scholar

[10] S. Tanaka, Y. Sawai and A. Chiba: J. Eur. Ceramic Society Vol. 24 (2004), p.289

Google Scholar

[11] P.D. Yang and C.M. Lieber: J. Mater. Res. Vol.12(11) (1997), p.2981

Google Scholar

[12] P. Badica, A. Sundaresan, A. Crisan, J.C. Nie, M. Hirai, S. Fujiwara, H. Kito and H. Ihara: Physica C Vol. 383(4) (2003), p.482

DOI: 10.1016/s0921-4534(02)01836-1

Google Scholar

[13] J. Aponte, H.C. Abache, A. Sa-Neto and M. Octavio: Phys. Rev. B Vol. 39 (1989), p.2233

Google Scholar

[14] W. Zhang, A. Pashitski and E.E. Hellstrom: Am Inst. Phys. Proc. Superconductivity & its Applications Vol. 273 (1993), p.599

Google Scholar