Phase-Field Numerical Simulation of Pure Free Dendritic Growth Using Wheeler and Karma Model

Article Preview

Abstract:

To understand the dendrite formation during solidification phase-field model has become a powerful numerical method of simulating crystal growth in recent years. Two phase-field models due to Wheeler et al. and Karma et al., respectively, have been employed for modeling the dendrite growth worldwidely. The comparison of the two models was performed. Then using the adaptive finite element method, both models were solved to simulate a free dendrite growing from highly undercooled melts of nickel at various undercoolings. The simulated results showed that the discrepancy between the two phase-field models is negligible. Careful comparison of the phase-filed simulations with LKT(BCT) theory and experimental data were carried out, which demonstrated that the phase-field models are able to quantitatively simulate the dendrite growth of nickel at low undercoolings, however, at undercoolings above ten percent of the melting point (around 180K), the simulated velocities by Wheeler and Karma model as well as the analytical predictions overestimated the reported experiment results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-97

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Caginalp: Phys. Rev. A Vol. 39 (1989), p.5887.

Google Scholar

[2] A.A. Wheeler, B.T. Murray and R.J. Schaefer: Physica D Vol. 66 (1993), p.243.

Google Scholar

[3] R. Kobayashi: Physica D Vol. 63 (1993), p.410.

Google Scholar

[4] S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun and G.B. McFadden: Physica D Vol. 69 (1993), p.189.

DOI: 10.1016/0167-2789(93)90189-8

Google Scholar

[5] A. Karma and W.J. Rappel: Phys. Rev. E Vol. 53 (1996), p. R3017.

Google Scholar

[6] A. Karma and W.-J. Rappel: Phys. Rev. E Vol. 57 (1998), p.4323.

Google Scholar

[7] J.A. Warren and W.J. Boettinger: Acta Metall. Mater. Vol. 43 (1995), p.689.

Google Scholar

[8] A.A. Wheeler, W.J. Boettinger and G.B. McFadden: Phys. Rev. A Vol. 45 (1992), p.7424.

Google Scholar

[9] A.A. Wheeler, W.J. Boettinger and G.B. McFadden: Phys. Rev. E Vol. 47 (1993), p.1893.

Google Scholar

[10] A. Karma: Phys. Rev. Lett. Vol. 87 (2001), p.115701.

Google Scholar

[11] M. Ohno and K. Matsuura: Phys. Rev. E Vol. 79 (2009), p.

Google Scholar

[12] G.E. Nash and M.E. Glicksman: Acta Metall. Vol. 22 (1974), p.1283.

Google Scholar

[13] J.S. Langer: Physicochem. Hydrodyn. Vol. 1 (1980), p.41.

Google Scholar

[14] J. Lipton, M.E. Glicksman and W. Kurz: Mater. Sci. Eng. Vol. 65 (1984), p.57.

Google Scholar

[15] J. Lipton, M.E. Glicksman and W. Kurz: Metall. Trans. A Vol. 18 (1987), p.341.

Google Scholar

[16] J. Lipton, W. Kurz and R. Trivedi: Acta Metall. Vol. 35 (1987), p.957.

Google Scholar

[17] W.J. Boettinger, S.R. Coriell and R. Trivedi, in: Rapid solidification processing: principles and technologies, edited by R. Mehrabian, P.A. Parrish Claitor's Publishing, Baton Rouge (LA), (1988).

Google Scholar

[18] D. Turnbull: Metall. Trans. B Vol. 12 (1981), p.217.

Google Scholar

[19] D. Turnbull: J. Phys. Chem. Vol. 66 (1962), p.609.

Google Scholar

[20] S.C. Huang and M.E. Glicksman: Acta Metall. Vol. 29 (1981), p.701.

Google Scholar

[21] B.T. Bassler, W.H. Hofmeister and R.J. Bayuzick: Mater. Sci. Eng. A Vol. 342 (2003), p.80.

Google Scholar

[22] O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe and D.M. Herlach: J. Cryst. Growth Vol. 297 (2006), p.211.

DOI: 10.1016/j.jcrysgro.2006.08.045

Google Scholar

[23] K. Eckler and D.M. Herlach: Mater. Sci. Eng. A Vol. 178 (1994), p.159.

Google Scholar

[24] S. Walder and P.L. Ryder: Mater. Sci. Eng. A Vol. 203 (1995), p.197.

Google Scholar

[25] R. Li and W.B. Liu: http://dsec.pku.edu.cn/~rli/.

Google Scholar

[26] A.M. Mullis: Acta Mater. Vol. 51 (2003), p.1959.

Google Scholar

[27] J.J. Hoyt, M. Asta and A. Karma: Mater. Sci. Eng. R-Rep. Vol. 41 (2003), p.121.

Google Scholar

[28] J. Bragard, A. Karma, Y.H. Lee and M. Plapp: Interface Science Vol. 10 (2002), p.121.

Google Scholar

[29] P.R. Algoso, W.H. Hofmeister and R.J. Bayuzick: Scr. Mater. Vol. 51 (2004), p.539.

Google Scholar