Chaos, Sliding Mode Control between Two Different Fractional-Order Hyperchaotic Systems with Uncertain Parameters

Article Preview

Abstract:

This work investigates chaos synchronization between two different fractional-order hyperchaotic system (FOHS)s with uncertain parameters. The Chen FOHS is controlled to be synchronized with a new FOHS. The analytical conditions for the synchronization of different FOHSs are derived by utilizing the stability theory of fractional-order system. Furthermore, synchronization between two different FOHSs is achieved by utilizing sliding mode control method in a quite short period and both remain in chaotic states. Numerical simulations are used to verify the theoretical analysis using different values of the fractional-order parameter

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 424-425)

Pages:

318-323

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pecora L, Carroll T. Synchronization in chaotic systems. J. Phys Rev Lett. 64, 821-824. (1990).

DOI: 10.1103/physrevlett.64.821

Google Scholar

[2] Momani S, Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. J. Chaos Soliton Fract. 31, 1248-1255 (2007).

DOI: 10.1016/j.chaos.2005.10.068

Google Scholar

[3] Odibat ZM, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. J. Int J Nonlinear Sci NumerSimul. 7, 27-34 (2006).

DOI: 10.1515/ijnsns.2006.7.1.27

Google Scholar

[4] Ahmad W, Sprott C. Chaos in fractional-order autonomous nonlinear systems. J. Chaos Soliton Fract. 16, 339-351(2003).

DOI: 10.1016/s0960-0779(02)00438-1

Google Scholar

[5] Ahmad Wajdi M, Harb Ahmad M. On nonlinear control design for autonomous chaotic systems of integer and fractional orders. J. Chaos Soliton Fract. 18, 693-701 (2003).

DOI: 10.1016/s0960-0779(02)00644-6

Google Scholar

[6] Chen C, Yau H, Peng C. Design of extended backstepping sliding mode controller for uncertain chaotic systems. J. Int J Nonlinear Sci Numer Simul. 8, 137-145 (2007).

DOI: 10.1515/ijnsns.2007.8.2.137

Google Scholar

[7] Yau H, Kuo C, Yan J. Fuzzy sliding mode control for a class of chaos synchronization with uncertainties. J. Int J Nonlinear Sci Numer Simul. 7, 333-338 (2006).

DOI: 10.1515/ijnsns.2006.7.3.333

Google Scholar

[8] Deng W, Li C. Chaos synchronization of the fractional Lü system. J. Physica A. 353, 61-72 (2005).

Google Scholar

[9] Wang J, Zhang Y. Designing synchronization schemes for chaotic fractional-order unified systems. J. Chaos Soliton Fract. 30, 1265-1272 (2006).

DOI: 10.1016/j.chaos.2005.09.027

Google Scholar

[10] Li C, Chen G. Chaos and hyperchaos in the fractional-order Rössler equations. J. Phys A: Statist Mech Appl. 341, 55-61(2004).

Google Scholar

[11] Ge Z, Ou C. Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal. J. Chaos Soliton Fract. 35, 705-717 (2008).

DOI: 10.1016/j.chaos.2006.05.101

Google Scholar

[12] Li C, Chen G. Chaos in the fractional order Chen system and its control. J. Chaos Soliton Fract. 22, 549-554 (2004).

DOI: 10.1016/j.chaos.2004.02.035

Google Scholar

[13] Lu J. Chaotic dynamics of the fractional-order Lü system and its synchronization. .J. Phys Lett A. 354 , 305-311(2006).

DOI: 10.1016/j.physleta.2006.01.068

Google Scholar

[14] Hu JianBing, Han Yan, Zhao LingDong, Synchronizing fractional chaotic systems based on Lyapunov equation. J. Acta Phys. Sin, 57, 7522-7526 (2008).

DOI: 10.7498/aps.57.7522

Google Scholar

[15] Lin Pan, Wuneng Zhou, Long Zhou, Kehui Sun. Chaos synchronization between two different fractional-order hyperchaotic systems. J. Commun Nonlinear Sci Numer Simulat 16, 2628-2640 (2011).

DOI: 10.1016/j.cnsns.2010.09.016

Google Scholar

[16] Ilia Grigorenko, Elena Grigorenko. Chaotic Dynamics of the Fractional Lorenz System. J. Phys. Rev. Lett. 91, 34101-34104 (2003).

DOI: 10.1103/physrevlett.91.034101

Google Scholar

[17] Wang J W, Xiong X H , Zhang YB. Extending synchronizationscheme to chaotic fractional-order Chen systems J. Physica A. 370, 279-285(2006).

DOI: 10.1016/j.physa.2006.03.021

Google Scholar