N-Soliton Solutions for (2+1)-Dimensional Nonlinear Dissipative Zabolotskaya-Khokhlov System

Article Preview

Abstract:

Applying a symbolic computation algorithm, namely, the improved Hirota bilinear method, a new type of the N-soliton solutions is obtained for the (2+1)-dimensional nonlinear dissipative Zabolotskaya-Khokhlov system. The solutions can be expressed explicitly. Furthermore, the evolution process is investigated for the N-soliton solutions

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 424-425)

Pages:

564-567

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zabolotskaya E.A., Khokhlov R.R.: Quasi-plane waves in the non-linear acoustics of confined beams, Sov. Phys. Acoust., vol. 15, pp.35-40(1969).

Google Scholar

[2] Kuznetsov V.P.: Equations of nonlinear acoustics, Sov. Phys. Acoust., vol. 16, pp.467-470(1971).

Google Scholar

[3] Clarkson P.A. and S. Hood: Nonclassical symmetry reductions and exact solutions of the Zabolotskaya–Khokhlov equation, Eur. J. Appl. Math., vol. 3, pp.381-415(1992).

DOI: 10.1017/s0956792500000929

Google Scholar

[4] Rozanova A.: The Khokhlov–Zabolotskaya–Kuznetsov equation, C.R. Acad. Sci., Ser. I: Math., vol. 344, pp.337-342(2007).

DOI: 10.1016/j.crma.2007.01.010

Google Scholar

[5] Bruzon M.S., Gandarias M.L., Torrisi M., and Tracina R.: Some traveling wave solutions for the dissipative Zabolotskaya-Khokhlov equation, J. Math. Phys., vol. 50, pp.103504-10(2009).

DOI: 10.1063/1.3204507

Google Scholar

[6] Wazwaz A.M.: Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., vol. 190, pp.633-640(2007).

DOI: 10.1016/j.amc.2007.01.056

Google Scholar

[7] Li B.Q., Ma Y.L., Sun J.Z.: The interaction processes of the N-soliton solutions for an extended generalization of Vakhnenko equation, Appl. Math. Comput., vol. 216, pp.3522-3535(2010).

DOI: 10.1016/j.amc.2010.04.072

Google Scholar