Effect of Na-Doped Concentration on the Structure and Optical Properties of ZnO Thin Films

Article Preview

Abstract:

Na-doped ZnO thin films were deposited on microscope glass substrates by sol-gel spin coating method, the Na/Zn ratio were 0at.%, 5at.%, 7.5at.%, 10at.%, 15at.%. The crystal structures, surface morphology, and optical properties were analyzed by X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrophotometer, respectively. The results show that all the films are preferentially oriented along the c-axis perpendicular to the substrate surface. With the increase of the doping concentration, the roughness of the surfaces decrease and grain size grows from 17.1nm to 21.7nm, the sample with 10at.% Na exhibits best crystallinity and has lowest strain along the c-axis. The average optical transparency of the samples is higher than 70%, optical band gaps are between 3.213eV and 3.289eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 430-432)

Pages:

310-314

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Klingshim: Phys. Stat. Sol. B Vol. 71 (1975), pp.547-559.

Google Scholar

[2] T. Makino, C.H. Chia, Nguen T. Tuan, et al.: Appl. Phys. Lett. Vol. 77 (2000), pp.1632-1634.

Google Scholar

[3] F. Ding, Z. Fu and Q. Qin: Electrochem. Solid-State Lett. Vol. 2 (1999), pp.418-419.

Google Scholar

[4] H. Kind, H. Yan, B. Messer, et al.: Adv. Mater. Vol. 14 (2002), pp.158-160.

Google Scholar

[5] B. S. Kang, L. C. Tien, D. P. Norton, et al.: Appl. Phys. Mater. Sci. Process. Vol. 80 (2005), pp.1029-1032.

Google Scholar

[6] X. Wang, J. Zhou, J. Song, et al.: Nano Lett. Vol. 6 (2006), pp.2768-2722.

Google Scholar

[7] S. J. Lim, Soon-ju Kwon, Hyungjun Kim, et al.: Appl. Phys. Lett. Vol. 91(2007), pp.183517-183519.

Google Scholar

[8] Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, et al.: J. Electroceram. Vol. 22 (2009), pp.198-202.

Google Scholar

[9] B. Xiao, Z. Ye, Y. Zhang, et al.: Appl. Surf. Sci. Vol. 253(2009), pp.895-897.

Google Scholar

[10] Satoshi Takeda, Makoto Fukawa: Thin Solid Films Vol. 468 (2004), pp.234-239.

Google Scholar

[11] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al.: Jpn. J. Appl. Phys. Vol. 36 (1997), p. L1453-L1455.

Google Scholar

[12] Michihiro Sano, Kazuhiro Miyamoto, Hiroyuki Kato, et al.: J. Appl. Phys. Vol. 95 (2004), pp.5527-5531.

Google Scholar

[13] P. Nunes, E. Fortunato, P. Tonello, et al.: Vacuum Vol. 64 (2002), pp.281-285.

Google Scholar

[14] Lidia Armelao, Monica Fabrizio, Stefano Gialaneela, et al.: Thin Solid Films Vol. 394 (2001), pp.90-95.

Google Scholar

[15] H. C. Ong, A. X. E. Zhu and G. T. Du: Appl. Phys. Lett. Vol. 80 (2002), pp.941-943.

Google Scholar

[16] C. H. Park, S. B. Zhang and S. H. Wei: Phys. Rev. B Vol. 66 (2002), pp.073202-073204.

Google Scholar

[17] Yung-Shou Ho and Kuan-Yi Lee: Thin Solid Films Vol. 519 (2010), pp.1431-1434.

Google Scholar

[18] J. Tauc, R. Grigrovici and A. Vancu: Phys. Status Solidi B Vol. 15 (1966), pp.627-637.

Google Scholar

[19] A. D. Trolio, E. M. Bauer and G. Scavia: J. Appl. Phys. Vol. 105 (2009), pp.113109-113114.

Google Scholar