[1]
Kennedy,J. and Eberhart, R., 1995. Particle Swarm Optimization. In: Proceeding of the IEEE International Conference on Neural Networks, Perth, Australia, p.1942-(1948).
Google Scholar
[2]
Kennedy,J. and Eberhart, R., 2001. Swarm Intelligence. San Diego, California: Academic Press.
Google Scholar
[3]
Clerc,M. and Kennedy,J., 2002. The particle swarm explosion, stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58-73.
DOI: 10.1109/4235.985692
Google Scholar
[4]
Trelea I.C., 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325.
DOI: 10.1016/s0020-0190(02)00447-7
Google Scholar
[5]
Angeline, P., 1998. Using Selection to Improve Particle Swarm Optimization. In: Proceeding of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, USA, pp.84-89.
DOI: 10.1109/icec.1998.699327
Google Scholar
[6]
Eberhart,R. and Shi,Y., 1998. Comparison between genetic algorithms and particle swarm optimization.
Google Scholar
[7]
Shi, X.H., Wang L.M., Lee H.P., Yang, X.W., Wang L.M. and Liang Y.C., 2003. An Improved Genetic Algorithm with Variable Population-Size and A PSO-GA Based Hybrid Evolutionary Algorithm. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, China, pp.1735-1740.
DOI: 10.1109/icmlc.2003.1259777
Google Scholar
[8]
Shi, X. H., Liang, Y.C., Lee, H. P., Lu,C. and Wang, L.M., 2005. An improved GA and a novel PSO-GA-based hybrid algorithm. Information Processing Letters, 93(5), 255–261.
DOI: 10.1016/j.ipl.2004.11.003
Google Scholar
[9]
Runarsson,T. and Yao,X., 2000. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. on Evolutionary Computation, 4(3), 284-294.
DOI: 10.1109/4235.873238
Google Scholar
[10]
Tsai,S. w. and Wu, E. m., 1971. A general theory of strength for anisotropic materials, Jouranl of composite materials, Vol. 5, pp.58-80.
Google Scholar