The Effect of Ultrasonic Etching on the Structure of Stabilized PAN Fibers

Article Preview

Abstract:

The effect of ultrasonic etching on the crystalline structure, fibrillar structure, skin-core structure of stabilized PAN fibers was studied by XRD and SEM. It has been found various degree of decrease occurs in the crystallite size and crystallinity of fibers heated at different temperatures after ultrasonic etching. Fibrillar structure of fibers heated at 195°C~245°C appear after ultrasonic etching in 90wt% DMSO solution for 6h. When the stabilization temperature is over 245°C, no separated fibrils or macrofibrils are found. When stabilized fibers were etched in pure DMSO, skin-core morphology was observed for the fibers heated at 235°C~265°C. The method of ultrasonic etching using pure DMSO confirms the structural difference between the skin and the core, also makes the difference visual.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 430-432)

Pages:

592-597

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S.A. Rahaman, A.F. Ismail and A. Mustafa: Polymer Degradation and Stability vol. 92(2007), pp.1421-1432.

Google Scholar

[2] W.X. Zhang, J. Liu and G. Wu: Carbon, vol. 41(2003), pp.2805-2812.

Google Scholar

[3] E. Fitzer, W. Frohs and M. Heine: Carbon vol. 24(1986), pp.387-395.

Google Scholar

[4] M.X. Ji, C.G. Wang, Y.J. Bai, et al.: Polymer Bulletin vol. 59(2007), pp.527-536.

Google Scholar

[5] A. G. Fazlitdinova, V. A. Tyumentsev, S. A. Podkopayev, et al.: Journal of Materials Science vol. 45(2010), p.3998–4005.

Google Scholar

[6] J.X. Li, R.D. Sanderson and E.P. Jacobs: Journal of Membrane Science vol. 205(2002), pp.247-257.

Google Scholar

[7] M.A. Alavi and A. Morsali: Ultrasonics Sonochemistry vol. 15(2008), pp.833-838.

Google Scholar

[8] A. Gedanken: Ultrasonics Sonochemistry vol. 11(2004), pp.47-55.

Google Scholar

[9] C. Pétrier and A. Francony: Ultrasonics Sonochemistry vol. 4(1997), pp.295-300.

Google Scholar

[10] K. Hirai, Y. Nagata and Y. Maeda: Ultrasonics Sonochemistry vol. 3(1996), pp.205-207.

Google Scholar

[11] G. Cum, G. Galli, R. Gallo et al.: Ultrasonics vol. 30(1992), pp.267-270.

Google Scholar

[12] A.K. Pandey, P.C. Kalsi and R.H. Iyer: Nuclear Instruments and Methods in Physics Research Section B vol. 134(1998), pp.393-399.

Google Scholar

[13] T. Xia, S.Q. Shi and X.C. Wan: Journal of Food Engineering vol. 74(2006), pp.557-560.

Google Scholar

[14] M. Tadashi, O. Kenji, H. Tomei, et al.: Composites Part A: Applied Science and Manufacturing vol. 38(2007), pp.771-778.

Google Scholar

[15] Q.F. Wang, C.G. Wang, M.J. Yu, et al.: Science China (Technological Sciences) vol. 53(2010), pp.1489-1494.

Google Scholar

[16] Q.F. Wang, C.G. Wang, Y.J. Bai et al.: Journal of Polymer Science Part B: Polymer Physics vol. 48(2010), pp.617-619.

Google Scholar

[17] G. Hinrichsen: Journal of Polymer Science Part C Polymer Symposia vol. 38(1972), pp.303-314.

Google Scholar

[18] S. B. Warner and D. R. Uhlmann: Journal of Materials Science vol. 14(1979), p.1893-(1900).

Google Scholar