Stereovision for 3D Measurements of Fabric Pilling

Article Preview

Abstract:

This paper introduces a 3D imaging system designed for objective evaluation of fabric pilling. The system was aimed at using a pair of regular digital cameras to capture two side-by-side images of a pilling fabric without special lighting, and the robust calibration and stereo-matching algorithms to reconstruct high-fidelity 3D surfaces of fabric. The depth data provides the most relevant information for pilling segmentation and measurements. The outcome of the surface reconstruction is independent of fabric structures, colors and fiber contents. 3D measurements are useful for understanding pilling mechanisms in different abrasive treatments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-635

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xu, B., Instrumental evaluation of fabric pilling, Textile Inst. J. 88 (1997) 488-500.

Google Scholar

[2] Abril, H. C., Millan, M. S., Torres, Y., and Navarro, R., Automatic Method Based on Image Analysis for Pilling Evaluation in Fabrics, Opt. Eng. 37-11 (1998) 2937–2947.

DOI: 10.1117/1.601881

Google Scholar

[3] Palmer, S., and Wang, X., Evaluating the Robustness of Objective Pilling Classification with the Two-Dimensional Discrete Wavelet Transform, Textile Res. J. 74 (2004) 140-145.

DOI: 10.1177/004051750407400210

Google Scholar

[4] Kim, S. C. and Kang, T. J., Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method, Part II: Fabric Pilling Evaluation, Textile Res. J. 75 (2005) 761-770.

DOI: 10.1177/0040517505059209

Google Scholar

[5] Zhang, J., Wang, X. and Palmer, S., Objective Grading of Fabric Pilling with Wavelet Texture Analysis, Textile Res. J. 77 (2007) 871-879.

DOI: 10.1177/0040517507081312

Google Scholar

[6] Chen, X., Xu, Z., Chen, T., Wang, J. and Li, L., Detecting Pills in Fabric Images Based on Multi-scale Matched Filtering, Textile Res. J. 79 (2009) 1389-1395.

DOI: 10.1177/0040517508099913

Google Scholar

[7] Zhang, J., Wang, X. and Palmer, S., Performance of an Objective Fabric Pilling Evaluation Method, Textile Res. J. 80 (2010) 1648-1657.

DOI: 10.1177/0040517510361802

Google Scholar

[8] Yap, P. H., Wang, X., Wang, L., and Ong, K.L., Prediction of Wool Knitwear Pilling Propensity using Support Vector Machines, Textile Res. J. 80 (2010) 77-83.

DOI: 10.1177/0040517509102226

Google Scholar

[9] Ramgulam, R.B., Amirbayat, J. and Porat, I., The Objective Assessment of Fabric Pilling, Part I: Methodology, J. of Textile Institute. 84 (1993) 221-226.

DOI: 10.1080/00405009308631264

Google Scholar

[10] Sul, I. H., Hong, K. H., Shim, H. and Kang, T. J., Surface Roughness Measurement of Nonwovens Using Three-dimensional Profile Data, Textile Res. J. 76 (2006) 828-834.

DOI: 10.1177/0040517506064256

Google Scholar

[11] Mendes, A. O., Fiadeiro, P. T., Pereira, M. J. T. and Miguel, R. A.L., Dual-scanning System for Optical Estimation of Pilling Formation, Textile Res. J. 80 (2010) 1201-1213.

DOI: 10.1177/0040517509355347

Google Scholar

[12] Bresee, Randall R., His, Chang H., System for transporting and imaging a textile material, U.S. patent, 6, 344, 872. (2002).

Google Scholar

[13] LineTech Industries, PillGrade Operation Manual, http: /linetechindustries. com (2011).

Google Scholar

[14] Xin, B., Hu, J. and Baciu G., Visualization of Textile Surface Roughness Based on Silhouette Image Analysis, Textile Res. J. 80 (2010) 166-176.

DOI: 10.1177/0040517508093779

Google Scholar

[15] Cherkassky, A. and Weinberg, A., Objective Evaluation of Textile Fabric Appearance Part1: Basic , Protrusion Detection, and Parameterization, Textile Res. J., 80, 226-235, (2010).

DOI: 10.1177/0040517509105072

Google Scholar

[16] Tsai, R.Y., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, RA-3(4): 323-344, (1987).

DOI: 10.1109/jra.1987.1087109

Google Scholar

[17] Brown MZ, Burschka D, and Hager GD., Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8): 993-1008, (2003).

DOI: 10.1109/tpami.2003.1217603

Google Scholar

[18] Terzopoulos D., Regularization of inverse visual problems involving discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4): 413-424, (1986).

DOI: 10.1109/tpami.1986.4767807

Google Scholar

[19] Piegl, L.A. and Tiller, W., The NURBS Book (Monographs in Visual Communication), 2nd ed., ISBN-10: 3540615458, Springer, (1996).

Google Scholar