[1]
Xu, B., Instrumental evaluation of fabric pilling, Textile Inst. J. 88 (1997) 488-500.
Google Scholar
[2]
Abril, H. C., Millan, M. S., Torres, Y., and Navarro, R., Automatic Method Based on Image Analysis for Pilling Evaluation in Fabrics, Opt. Eng. 37-11 (1998) 2937–2947.
DOI: 10.1117/1.601881
Google Scholar
[3]
Palmer, S., and Wang, X., Evaluating the Robustness of Objective Pilling Classification with the Two-Dimensional Discrete Wavelet Transform, Textile Res. J. 74 (2004) 140-145.
DOI: 10.1177/004051750407400210
Google Scholar
[4]
Kim, S. C. and Kang, T. J., Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method, Part II: Fabric Pilling Evaluation, Textile Res. J. 75 (2005) 761-770.
DOI: 10.1177/0040517505059209
Google Scholar
[5]
Zhang, J., Wang, X. and Palmer, S., Objective Grading of Fabric Pilling with Wavelet Texture Analysis, Textile Res. J. 77 (2007) 871-879.
DOI: 10.1177/0040517507081312
Google Scholar
[6]
Chen, X., Xu, Z., Chen, T., Wang, J. and Li, L., Detecting Pills in Fabric Images Based on Multi-scale Matched Filtering, Textile Res. J. 79 (2009) 1389-1395.
DOI: 10.1177/0040517508099913
Google Scholar
[7]
Zhang, J., Wang, X. and Palmer, S., Performance of an Objective Fabric Pilling Evaluation Method, Textile Res. J. 80 (2010) 1648-1657.
DOI: 10.1177/0040517510361802
Google Scholar
[8]
Yap, P. H., Wang, X., Wang, L., and Ong, K.L., Prediction of Wool Knitwear Pilling Propensity using Support Vector Machines, Textile Res. J. 80 (2010) 77-83.
DOI: 10.1177/0040517509102226
Google Scholar
[9]
Ramgulam, R.B., Amirbayat, J. and Porat, I., The Objective Assessment of Fabric Pilling, Part I: Methodology, J. of Textile Institute. 84 (1993) 221-226.
DOI: 10.1080/00405009308631264
Google Scholar
[10]
Sul, I. H., Hong, K. H., Shim, H. and Kang, T. J., Surface Roughness Measurement of Nonwovens Using Three-dimensional Profile Data, Textile Res. J. 76 (2006) 828-834.
DOI: 10.1177/0040517506064256
Google Scholar
[11]
Mendes, A. O., Fiadeiro, P. T., Pereira, M. J. T. and Miguel, R. A.L., Dual-scanning System for Optical Estimation of Pilling Formation, Textile Res. J. 80 (2010) 1201-1213.
DOI: 10.1177/0040517509355347
Google Scholar
[12]
Bresee, Randall R., His, Chang H., System for transporting and imaging a textile material, U.S. patent, 6, 344, 872. (2002).
Google Scholar
[13]
LineTech Industries, PillGrade Operation Manual, http: /linetechindustries. com (2011).
Google Scholar
[14]
Xin, B., Hu, J. and Baciu G., Visualization of Textile Surface Roughness Based on Silhouette Image Analysis, Textile Res. J. 80 (2010) 166-176.
DOI: 10.1177/0040517508093779
Google Scholar
[15]
Cherkassky, A. and Weinberg, A., Objective Evaluation of Textile Fabric Appearance Part1: Basic , Protrusion Detection, and Parameterization, Textile Res. J., 80, 226-235, (2010).
DOI: 10.1177/0040517509105072
Google Scholar
[16]
Tsai, R.Y., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, RA-3(4): 323-344, (1987).
DOI: 10.1109/jra.1987.1087109
Google Scholar
[17]
Brown MZ, Burschka D, and Hager GD., Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8): 993-1008, (2003).
DOI: 10.1109/tpami.2003.1217603
Google Scholar
[18]
Terzopoulos D., Regularization of inverse visual problems involving discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4): 413-424, (1986).
DOI: 10.1109/tpami.1986.4767807
Google Scholar
[19]
Piegl, L.A. and Tiller, W., The NURBS Book (Monographs in Visual Communication), 2nd ed., ISBN-10: 3540615458, Springer, (1996).
Google Scholar