[1]
DENGH, KRSTICM. Output-feedback stochastic nonlinear stabiliza-tion[J]. IEEETransactions on Automatic Control, 1999, 44(2): 328-333.
Google Scholar
[2]
LIU Y G, ZHANG J F, JIANG Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems[J]. Automatica, 2007, 43(2): 238-251.
DOI: 10.1016/j.automatica.2006.08.028
Google Scholar
[3]
G. Yang, J. Wang, non-fragle H1 controller for linear systems with multiplicative controller gain varirations, automatica, Vol. 37, pp.727-737, (2001).
DOI: 10.1016/s0005-1098(01)00008-5
Google Scholar
[4]
E.K. Boukas, Nonfragile Controller Design for Linear Markovian Jump-ing Parameters Systems, journal of optimation theory and application: vol, 122, No. 2, pp.241-255. August (2004).
DOI: 10.1023/b:jota.0000042520.85247.0c
Google Scholar
[5]
Ju H. Park, Robust non-fragile guaranteed cost control of uncertain large-scale systems with time -delay in subsystem internections, International Journal of System Science volume 35, Number 4, 10 April 2004, pp.233-241.
DOI: 10.1080/00207720410001714121
Google Scholar
[6]
Xiang Tian, Li Xie, Yaowu Chen, non-fragle H1 controller for uncer-tain time delayed stochastic systm with sector constraints, 2007 IEEE International conference on control and automation Guangzhou , China. May 30 to June 1, (2007).
DOI: 10.1109/icca.2007.4376683
Google Scholar
[7]
LIUYG, ZHANGJF. Output-feedback controlofa classof stochastic nonlinear systems with linearly bounded unmeasurable states[J]. Inter-national Journal of Robust and Nonlinear Control, 2008, 18(6): 665-687.
DOI: 10.1002/rnc.1255
Google Scholar
[8]
LIUYG, PANZG, SHISJ. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk sensitive cost[J]. IEEETransactions on Automatic Control, 2003, 48(3): 509-513.
DOI: 10.1109/tac.2002.808484
Google Scholar
[9]
LIU Y G, ZHANG J F. Minimal-order observer and outputfeedback stabilization control design of stochastic nonlinear systems[J]. Science in China(Ser. F), 2004, 47(4): 527-544.
DOI: 10.1007/bf02901662
Google Scholar
[10]
LIU Y G, ZHANG J F. Practical output-feedback risksensitive control for stochastic nonlinear systems with stable zero-dynamics[J]. SIAM Journal on Control and Optimization, 2006, 45(3): 885-926.
DOI: 10.1137/s0363012903439185
Google Scholar
[11]
L.H. Keel, S.P. Bhattacharyya , Robust fragile or optimal?, IEEE TRans. Automat. Control 42(1997) 1098-1105.
DOI: 10.1109/9.618239
Google Scholar
[12]
WU Z J, XIE X J, ZHANG S Y. Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function[J]. International Journal of Control, 2006, 79(12): 1635-1646.
DOI: 10.1080/00207170600893004
Google Scholar
[13]
YANG B, LIN W. Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization [J]. IEEE Transactions on Automatic Control. 2005, 50(5): 619-630.
DOI: 10.1109/tac.2005.847084
Google Scholar
[14]
J. -S. Yee, J. L. Wang, G.H. Yang, An LMI approach to non-fragile guaranteed cost control of uncertain discrete time delay systems, Asian J. control 3(2001) 226-233.
DOI: 10.1111/j.1934-6093.2001.tb00061.x
Google Scholar
[15]
NXie, G-YTang, Delay-dependent nonfragle guaranteed cost comntrol for nonlinear time-delay systems, Non-linear Analysis 63(2006) 2084, (2097).
DOI: 10.1016/j.na.2005.08.005
Google Scholar