Non-Fragile Robust Controller Design for Nonlinear Stochastic System with Time-Delay

Article Preview

Abstract:

The problem of non-fragile memoryless controller design for a class of uncertain nonlinear stochastic system with time-delay is considered. Based on Lyapunov candidate and the stochastic Lyapunov stability theory, the sufficient conditions making the closed-loop system robust stable are given and de-rived. All results are given by the form of linear matrix inequality (LMI) method. Numerical example is given to illustrate the effectiveness of the controller designed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 443-444)

Pages:

452-458

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] DENGH, KRSTICM. Output-feedback stochastic nonlinear stabiliza-tion[J]. IEEETransactions on Automatic Control, 1999, 44(2): 328-333.

Google Scholar

[2] LIU Y G, ZHANG J F, JIANG Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems[J]. Automatica, 2007, 43(2): 238-251.

DOI: 10.1016/j.automatica.2006.08.028

Google Scholar

[3] G. Yang, J. Wang, non-fragle H1 controller for linear systems with multiplicative controller gain varirations, automatica, Vol. 37, pp.727-737, (2001).

DOI: 10.1016/s0005-1098(01)00008-5

Google Scholar

[4] E.K. Boukas, Nonfragile Controller Design for Linear Markovian Jump-ing Parameters Systems, journal of optimation theory and application: vol, 122, No. 2, pp.241-255. August (2004).

DOI: 10.1023/b:jota.0000042520.85247.0c

Google Scholar

[5] Ju H. Park, Robust non-fragile guaranteed cost control of uncertain large-scale systems with time -delay in subsystem internections, International Journal of System Science volume 35, Number 4, 10 April 2004, pp.233-241.

DOI: 10.1080/00207720410001714121

Google Scholar

[6] Xiang Tian, Li Xie, Yaowu Chen, non-fragle H1 controller for uncer-tain time delayed stochastic systm with sector constraints, 2007 IEEE International conference on control and automation Guangzhou , China. May 30 to June 1, (2007).

DOI: 10.1109/icca.2007.4376683

Google Scholar

[7] LIUYG, ZHANGJF. Output-feedback controlofa classof stochastic nonlinear systems with linearly bounded unmeasurable states[J]. Inter-national Journal of Robust and Nonlinear Control, 2008, 18(6): 665-687.

DOI: 10.1002/rnc.1255

Google Scholar

[8] LIUYG, PANZG, SHISJ. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk sensitive cost[J]. IEEETransactions on Automatic Control, 2003, 48(3): 509-513.

DOI: 10.1109/tac.2002.808484

Google Scholar

[9] LIU Y G, ZHANG J F. Minimal-order observer and outputfeedback stabilization control design of stochastic nonlinear systems[J]. Science in China(Ser. F), 2004, 47(4): 527-544.

DOI: 10.1007/bf02901662

Google Scholar

[10] LIU Y G, ZHANG J F. Practical output-feedback risksensitive control for stochastic nonlinear systems with stable zero-dynamics[J]. SIAM Journal on Control and Optimization, 2006, 45(3): 885-926.

DOI: 10.1137/s0363012903439185

Google Scholar

[11] L.H. Keel, S.P. Bhattacharyya , Robust fragile or optimal?, IEEE TRans. Automat. Control 42(1997) 1098-1105.

DOI: 10.1109/9.618239

Google Scholar

[12] WU Z J, XIE X J, ZHANG S Y. Stochastic adaptive backstepping controller design by introducing dynamic signal and changing supply function[J]. International Journal of Control, 2006, 79(12): 1635-1646.

DOI: 10.1080/00207170600893004

Google Scholar

[13] YANG B, LIN W. Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization [J]. IEEE Transactions on Automatic Control. 2005, 50(5): 619-630.

DOI: 10.1109/tac.2005.847084

Google Scholar

[14] J. -S. Yee, J. L. Wang, G.H. Yang, An LMI approach to non-fragile guaranteed cost control of uncertain discrete time delay systems, Asian J. control 3(2001) 226-233.

DOI: 10.1111/j.1934-6093.2001.tb00061.x

Google Scholar

[15] NXie, G-YTang, Delay-dependent nonfragle guaranteed cost comntrol for nonlinear time-delay systems, Non-linear Analysis 63(2006) 2084, (2097).

DOI: 10.1016/j.na.2005.08.005

Google Scholar